4,944 research outputs found

    On the power of random greedy algorithms

    Full text link
    In this paper we solve two problems of Esperet, Kang and Thomasse as well as Li concerning (i) induced bipartite subgraphs in triangle-free graphs and (ii) van der Waerden numbers. Each time random greedy algorithms allow us to go beyond the Lovasz Local Lemma or alteration method used in previous work, illustrating the power of the algorithmic approach to the probabilistic method.Comment: 14 pages; minor edits; to appear in European Journal of Combinatoric

    Triangle-free subgraphs of random graphs

    Get PDF
    Recently there has been much interest in studying random graph analogues of well known classical results in extremal graph theory. Here we follow this trend and investigate the structure of triangle-free subgraphs of G(n,p)G(n,p) with high minimum degree. We prove that asymptotically almost surely each triangle-free spanning subgraph of G(n,p)G(n,p) with minimum degree at least (25+o(1))pn\big(\frac{2}{5} + o(1)\big)pn is O(p−1n)\mathcal O(p^{-1}n)-close to bipartite, and each spanning triangle-free subgraph of G(n,p)G(n,p) with minimum degree at least (13+ε)pn(\frac{1}{3}+\varepsilon)pn is O(p−1n)\mathcal O(p^{-1}n)-close to rr-partite for some r=r(ε)r=r(\varepsilon). These are random graph analogues of a result by Andr\'asfai, Erd\H{o}s, and S\'os [Discrete Math. 8 (1974), 205-218], and a result by Thomassen [Combinatorica 22 (2002), 591--596]. We also show that our results are best possible up to a constant factor.Comment: 18 page

    Letter graphs and geometric grid classes of permutations: characterization and recognition

    Full text link
    In this paper, we reveal an intriguing relationship between two seemingly unrelated notions: letter graphs and geometric grid classes of permutations. An important property common for both of them is well-quasi-orderability, implying, in a non-constructive way, a polynomial-time recognition of geometric grid classes of permutations and kk-letter graphs for a fixed kk. However, constructive algorithms are available only for k=2k=2. In this paper, we present the first constructive polynomial-time algorithm for the recognition of 33-letter graphs. It is based on a structural characterization of graphs in this class.Comment: arXiv admin note: text overlap with arXiv:1108.6319 by other author
    • …
    corecore