67 research outputs found

    Reconstruction of permutations distorted by single transposition errors

    Get PDF
    The reconstruction problem for permutations on nn elements from their erroneous patterns which are distorted by transpositions is presented in this paper. It is shown that for any n≥3n \geq 3 an unknown permutation is uniquely reconstructible from 4 distinct permutations at transposition distance at most one from the unknown permutation. The {\it transposition distance} between two permutations is defined as the least number of transpositions needed to transform one into the other. The proposed approach is based on the investigation of structural properties of a corresponding Cayley graph. In the case of at most two transposition errors it is shown that 32(n−2)(n+1)\frac32(n-2)(n+1) erroneous patterns are required in order to reconstruct an unknown permutation. Similar results are obtained for two particular cases when permutations are distorted by given transpositions. These results confirm some bounds for regular graphs which are also presented in this paper.Comment: 5 pages, Report of paper presented at ISIT-200

    06201 Abstracts Collection -- Combinatorial and Algorithmic Foundations of Pattern and Association Discovery

    Get PDF
    From 15.05.06 to 20.05.06, the Dagstuhl Seminar 06201 ``Combinatorial and Algorithmic Foundations of Pattern and Association Discovery\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Codes with Locality for Two Erasures

    Full text link
    In this paper, we study codes with locality that can recover from two erasures via a sequence of two local, parity-check computations. By a local parity-check computation, we mean recovery via a single parity-check equation associated to small Hamming weight. Earlier approaches considered recovery in parallel; the sequential approach allows us to potentially construct codes with improved minimum distance. These codes, which we refer to as locally 2-reconstructible codes, are a natural generalization along one direction, of codes with all-symbol locality introduced by Gopalan \textit{et al}, in which recovery from a single erasure is considered. By studying the Generalized Hamming Weights of the dual code, we derive upper bounds on the minimum distance of locally 2-reconstructible codes and provide constructions for a family of codes based on Tur\'an graphs, that are optimal with respect to this bound. The minimum distance bound derived here is universal in the sense that no code which permits all-symbol local recovery from 22 erasures can have larger minimum distance regardless of approach adopted. Our approach also leads to a new bound on the minimum distance of codes with all-symbol locality for the single-erasure case.Comment: 14 pages, 3 figures, Updated for improved readabilit

    Reconstructibility of matroid polytopes

    Get PDF
    We specify what is meant for a polytope to be reconstructible from its graph or dual graph, and we introduce the problem of class reconstructibility; i.e., the face lattice of the polytope can be determined from the (dual) graph within a given class. We provide examples of cubical polytopes that are not reconstructible from their dual graphs. Furthermore, we show that matroid (base) polytopes are not reconstructible from their graphs and not class reconstructible from their dual graphs; our counterexamples include hypersimplices. Additionally, we prove that matroid polytopes are class reconstructible from their graphs, and we present an O(n3) algorithm that computes the vertices of a matroid polytope from its n-vertex graph. Moreover, our proof includes a characterization of all matroids with isomorphic basis exchange graphs. © 2022 Society for Industrial and Applied Mathematic

    Hypomorphisms, orbits, and reconstruction

    Get PDF
    AbstractGraphs G and H are hypomorphic if there is a bijection φ: V(G) → V(H) such that G − u ≅ H − φ(u), for all u ∈ V(G). The reconstruction conjecture states that hypomorphic graphs are isomorphic, if G has at least three vertices. We investigate properties of the isomorphisms G − u ≅ H − φ(u), and their relation to the reconstructibility of G

    Reconstructibility of matroid polytopes

    Get PDF
    We specify what is meant for a polytope to be reconstructible from its graph or dual graph. And we introduce the problem of class reconstructibility, i.e., the face lattice of the polytope can be determined from the (dual) graph within a given class. We provide examples of cubical polytopes that are not reconstructible from their dual graphs. Furthermore, we show that matroid (base) polytopes are not reconstructible from their graphs and not class reconstructible from their dual graphs; our counterexamples include hypersimplices. Additionally, we prove that matroid polytopes are class reconstructible from their graphs, and we present a O(n3)O(n^3) algorithm that computes the vertices of a matroid polytope from its nn-vertex graph. Moreover, our proof includes a characterisation of all matroids with isomorphic basis exchange graphs.Comment: 22 pages, 5 figure
    • …
    corecore