74 research outputs found

    Wireless and Battery-Free Biosignal Monitoring using Passive RFID Tags

    Get PDF
    Wearable health monitoring devices are becoming increasingly ubiquitous in clinical settings and even in monitoring daily activities. This recent spurt in wearable devices has been made possible through the development of low power electronics, small footprint components and efficient data transmission methods. The next big step in making monitoring devices more 'wearable' is the elimination of batteries. Without the need to replace and recharge batteries, monitoring can be uninterrupted and the monitoring device itself can be seamlessly integrated into garments. However, to achieve this goal, merely reducing sensor power consumption is not enough. There is a need for unconventional methods of health monitoring. par In this work, a novel passive Radio Frequency Identification (RFID) based method for transmitting health parameters wirelessly and without batteries is described. The dissertation proposes an innovative method of transmitting health parameter data by simply turning RFID tags on and off. Technology for RFID based continuous monitoring that include a wireless power harvester and low-power circuits for amplification and health parameter detection are developed in this research. The dissertation includes practical applications of the technology that are demonstrated using heart rate and uterine contraction monitoring as examples. Empirical tests for characterizing the heart rate monitoring system are also conducted. The heart rate monitoring technology is validated with human testing which showed a correlation of over 99% between actual and detected heart rate data.Ph.D., Electrical Engineering -- Drexel University, 201

    How to Build an Embodiment Lab: Achieving Body Representation Illusions in Virtual Reality

    Get PDF
    Advances in computer graphics algorithms and virtual reality (VR) systems, together with the reduction in cost of associated equipment, have led scientists to consider VR as a useful tool for conducting experimental studies in fields such as neuroscience and experimental psychology. In particular virtual body ownership, where the feeling of ownership over a virtual body is elicited in the participant, has become a useful tool in the study of body representation, in cognitive neuroscience and psychology, concerned with how the brain represents the body. Although VR has been shown to be a useful tool for exploring body ownership illusions, integrating the various technologies necessary for such a system can be daunting. In this paper we discuss the technical infrastructure necessary to achieve virtual embodiment. We describe a basic VR system and how it may be used for this purpose, and then extend this system with the introduction of real-time motion capture, a simple haptics system and the integration of physiological and brain electrical activity recordings

    Low-Cost Sensors and Biological Signals

    Get PDF
    Many sensors are currently available at prices lower than USD 100 and cover a wide range of biological signals: motion, muscle activity, heart rate, etc. Such low-cost sensors have metrological features allowing them to be used in everyday life and clinical applications, where gold-standard material is both too expensive and time-consuming to be used. The selected papers present current applications of low-cost sensors in domains such as physiotherapy, rehabilitation, and affective technologies. The results cover various aspects of low-cost sensor technology from hardware design to software optimization

    Active Matrix Flexible Sensory Systems: Materials, Design, Fabrication, and Integration

    Get PDF
    A variety of modern applications including soft robotics, prosthetics, and health monitoring devices that cover electronic skins (e-skins), wearables as well as implants have been developed within the last two decades to bridge the gap between artificial and biological systems. During this development, high-density integration of various sensing modalities into flexible electronic devices becomes vitally important to improve the perception and interaction of the human bodies and robotic appliances with external environment. As a key component in flexible electronics, the flexible thin-film transistors (TFTs) have seen significant advances, allowing for building flexible active matrices. The flexible active matrices have been integrated with distributed arrays of sensing elements, enabling the detection of signals over a large area. The integration of sensors within pixels of flexible active matrices has brought the application scenarios to a higher level of sophistication with many advanced functionalities. Herein, recent progress in the active matrix flexible sensory systems is reviewed. The materials used to construct the semiconductor channels, the dielectric layers, and the flexible substrates for the active matrices are summarized. The pixel designs and fabrication strategies for the active matrix flexible sensory systems are briefly discussed. The applications of the flexible sensory systems are exemplified by reviewing pressure sensors, temperature sensors, photodetectors, magnetic sensors, and biosignal sensors. At the end, the recent development is summarized and the vision on the further advances of flexible active matrix sensory systems is provided

    Open electronics for medical devices: State-of-art and unique advantages

    Get PDF
    A wide range of medical devices have significant electronic components. Compared to open-source medical software, open (and open-source) electronic hardware has been less published in peer-reviewed literature. In this review, we explore the developments, significance, and advantages of using open platform electronic hardware for medical devices. Open hardware electronics platforms offer not just shorter development times, reduced costs, and customization; they also offer a key potential advantage which current commercial medical devices lack—seamless data sharing for machine learning and artificial intelligence. We explore how various electronic platforms such as microcontrollers, single board computers, field programmable gate arrays, development boards, and integrated circuits have been used by researchers to design medical devices. Researchers interested in designing low cost, customizable, and innovative medical devices can find references to various easily available electronic components as well as design methodologies to integrate those components for a successful design

    Compatibility of Open Source on Biomeasurement Systems Used in Health Care

    Get PDF
    Terveydenhuollossa käytetyt biomittausjärjestelmät ovat perinteisesti rakentuneet kaupallisista komponenteista. Näiden käytöllä on kuitenkin todettu olevan ongelmia, kuten kallis hinta, järjestelmän joustamattomuus sekä avoimuuden puute. Lisäksi terveydenhuollon asettamat vaatimukset biomittausjärjestelmille ovat muuttuneet. Nykyään biomittausjärjestelmiltä vaaditaan muun muassa kustannustehokkuutta, mahdollisuutta integroida eri mittausmenetelmiä samaan järjestelmään sekä potilaiden yksilöllisten mittaustarpeiden huomioimista. Kaupallisten järjestelmien ominaisuudet eivät pysty vastaamaan terveydenhuollon muuttuneisiin vaatimuksiin tarpeeksi tehokkaasti. Tähän ongelmaan pyritään etsimään ratkaisuja, jotta biomittausjärjestelmät vastaisivat entistä paremmin muuttuneita vaatimuksia. Yhtenä ratkaisuna voidaan esittää avoimuuden periaatteen hyödyntämistä. Näin ollen tässä työssä on selvitetty avoimuuden periaatteen soveltuvuutta ja käyttömahdollisuuksia terveydenhuollossa käytettävien biomittausjärjestelmien yhteydessä. Tätä varten on tehty kirjallisuusselvitystä olemassa olevista tutkimusprojekteista, joissa avoimuuden periaatetta on sovellettu biomittausjärjestelmiin. Tutkimusprojektien tarkastelussa on kiinnitetty erityisesti huomiota biomittausjärjestelmien vaatimuksiin, avoimuuden periaatteen tuomiin hyötyihin sekä haasteisiin, joita tutkimusprojekteissa on kohdattu. Kerätyn aineiston perusteella voidaan todeta, että avoimuuden periaatetta hyödynnetään monessa eri tyyppisessä biomittausjärjestelmässä. Monet työssä esitetyt biomittausjärjestelmät ovat kuitenkin vasta tutkimusvaiheessa, mutta on myös järjestelmiä, jotka ovat jo potilas käytössä. Työssä esitettävien havaintojen perusteella voidaan todeta, että avoimuuden periaate soveltuu ja on hyödynnettävissä terveydenhuollossa käytettävien biomittausjärjestelmien yhteydessä. Avainsanat: biomittaus, biomittausjärjestelmät, avoimuuden periaate, terveydenhuolto, lääkinnälliset laitteet, säädökset ja standardi

    Towards a Physiological Computing Infrastructure for Researching Students’ Flow in Remote Learning – Preliminary Results from a Field Study

    Get PDF
    With the advent of physiological computing systems, new avenues are emerging for the field of learning analytics related to the potential integration of physiological data. To this end, we developed a physiological computing infrastructure to collect physiological data, surveys, and browsing behavior data to capture students’ learning journey in remote learning. Specifically, our solution is based on the Raspberry Pi minicomputer and Polar H10 chest belt. In this work-in-progress paper, we present preliminary results and experiences we collected from a field study with medical students using our developed infrastructure. Our results do not only provide a new direction for more effectively capturing different types of data in remote learning by addressing the underlying challenges of remote setups, but also serve as a foundation for future work on developing a less obtrusive, (near) real-time measurement method based on the classification of cognitive-affective states such as flow or other learning-relevant constructs with the captured data using supervised machine learning
    corecore