1,313 research outputs found

    Wavelet treatment of the intra-chain correlation functions of homopolymers in dilute solutions

    Full text link
    Discrete wavelets are applied to parametrization of the intra-chain two-point correlation functions of homopolymers in dilute solutions obtained from Monte Carlo simulation. Several orthogonal and biorthogonal basis sets have been investigated for use in the truncated wavelet approximation. Quality of the approximation has been assessed by calculation of the scaling exponents obtained from des Cloizeaux ansatz for the correlation functions of homopolymers with different connectivities in a good solvent. The resulting exponents are in a better agreement with those from the recent renormalisation group calculations as compared to the data without the wavelet denoising. We also discuss how the wavelet treatment improves the quality of data for correlation functions from simulations of homopolymers at varied solvent conditions and of heteropolymers.Comment: RevTeX, 19 pages, 7 PS figures. Accepted for publication in PR

    Construction of Hilbert Transform Pairs of Wavelet Bases and Gabor-like Transforms

    Get PDF
    We propose a novel method for constructing Hilbert transform (HT) pairs of wavelet bases based on a fundamental approximation-theoretic characterization of scaling functions--the B-spline factorization theorem. In particular, starting from well-localized scaling functions, we construct HT pairs of biorthogonal wavelet bases of L^2(R) by relating the corresponding wavelet filters via a discrete form of the continuous HT filter. As a concrete application of this methodology, we identify HT pairs of spline wavelets of a specific flavor, which are then combined to realize a family of complex wavelets that resemble the optimally-localized Gabor function for sufficiently large orders. Analytic wavelets, derived from the complexification of HT wavelet pairs, exhibit a one-sided spectrum. Based on the tensor-product of such analytic wavelets, and, in effect, by appropriately combining four separable biorthogonal wavelet bases of L^2(R^2), we then discuss a methodology for constructing 2D directional-selective complex wavelets. In particular, analogous to the HT correspondence between the components of the 1D counterpart, we relate the real and imaginary components of these complex wavelets using a multi-dimensional extension of the HT--the directional HT. Next, we construct a family of complex spline wavelets that resemble the directional Gabor functions proposed by Daugman. Finally, we present an efficient FFT-based filterbank algorithm for implementing the associated complex wavelet transform.Comment: 36 pages, 8 figure

    Wavelet-Fourier CORSING techniques for multi-dimensional advection-diffusion-reaction equations

    Get PDF
    We present and analyze a novel wavelet-Fourier technique for the numerical treatment of multidimensional advection-diffusion-reaction equations based on the CORSING (COmpRessed SolvING) paradigm. Combining the Petrov-Galerkin technique with the compressed sensing approach, the proposed method is able to approximate the largest coefficients of the solution with respect to a biorthogonal wavelet basis. Namely, we assemble a compressed discretization based on randomized subsampling of the Fourier test space and we employ sparse recovery techniques to approximate the solution to the PDE. In this paper, we provide the first rigorous recovery error bounds and effective recipes for the implementation of the CORSING technique in the multi-dimensional setting. Our theoretical analysis relies on new estimates for the local a-coherence, which measures interferences between wavelet and Fourier basis functions with respect to the metric induced by the PDE operator. The stability and robustness of the proposed scheme is shown by numerical illustrations in the one-, two-, and three-dimensional case

    Almost diagonal matrices and Besov-type spaces based on wavelet expansions

    Full text link
    This paper is concerned with problems in the context of the theoretical foundation of adaptive (wavelet) algorithms for the numerical treatment of operator equations. It is well-known that the analysis of such schemes naturally leads to function spaces of Besov type. But, especially when dealing with equations on non-smooth manifolds, the definition of these spaces is not straightforward. Nevertheless, motivated by applications, recently Besov-type spaces BΨ,qα(Lp(Γ))B^\alpha_{\Psi,q}(L_p(\Gamma)) on certain two-dimensional, patchwise smooth surfaces were defined and employed successfully. In the present paper, we extend this definition (based on wavelet expansions) to a quite general class of dd-dimensional manifolds and investigate some analytical properties (such as, e.g., embeddings and best nn-term approximation rates) of the resulting quasi-Banach spaces. In particular, we prove that different prominent constructions of biorthogonal wavelet systems Ψ\Psi on domains or manifolds Γ\Gamma which admit a decomposition into smooth patches actually generate the same Besov-type function spaces BΨ,qα(Lp(Γ))B^\alpha_{\Psi,q}(L_p(\Gamma)), provided that their univariate ingredients possess a sufficiently large order of cancellation and regularity (compared to the smoothness parameter α\alpha of the space). For this purpose, a theory of almost diagonal matrices on related sequence spaces bp,qα(∇)b^\alpha_{p,q}(\nabla) of Besov type is developed. Keywords: Besov spaces, wavelets, localization, sequence spaces, adaptive methods, non-linear approximation, manifolds, domain decomposition.Comment: 38 pages, 2 figure

    Variational Approach in Wavelet Framework to Polynomial Approximations of Nonlinear Accelerator Problems

    Get PDF
    In this paper we present applications of methods from wavelet analysis to polynomial approximations for a number of accelerator physics problems. According to variational approach in the general case we have the solution as a multiresolution (multiscales) expansion in the base of compactly supported wavelet basis. We give extension of our results to the cases of periodic orbital particle motion and arbitrary variable coefficients. Then we consider more flexible variational method which is based on biorthogonal wavelet approach. Also we consider different variational approach, which is applied to each scale.Comment: LaTeX2e, aipproc.sty, 21 Page

    Variational-Wavelet Approach to RMS Envelope Equations

    Full text link
    We present applications of variational-wavelet approach to nonlinear (rational) rms envelope equations. We have the solution as a multiresolution (multiscales) expansion in the base of compactly supported wavelet basis. We give extension of our results to the cases of periodic beam motion and arbitrary variable coefficients. Also we consider more flexible variational method which is based on biorthogonal wavelet approach.Comment: 21 pages, 8 figures, LaTeX2e, presented at Second ICFA Advanced Accelerator Workshop, UCLA, November, 199
    • …
    corecore