19 research outputs found

    29th Annual Computational Neuroscience Meeting: CNS*2020

    Get PDF
    Meeting abstracts This publication was funded by OCNS. The Supplement Editors declare that they have no competing interests. Virtual | 18-22 July 202

    27th Annual Computational Neuroscience Meeting (CNS*2018): Part One

    Get PDF

    Discovering Causal Relations and Equations from Data

    Full text link
    Physics is a field of science that has traditionally used the scientific method to answer questions about why natural phenomena occur and to make testable models that explain the phenomena. Discovering equations, laws and principles that are invariant, robust and causal explanations of the world has been fundamental in physical sciences throughout the centuries. Discoveries emerge from observing the world and, when possible, performing interventional studies in the system under study. With the advent of big data and the use of data-driven methods, causal and equation discovery fields have grown and made progress in computer science, physics, statistics, philosophy, and many applied fields. All these domains are intertwined and can be used to discover causal relations, physical laws, and equations from observational data. This paper reviews the concepts, methods, and relevant works on causal and equation discovery in the broad field of Physics and outlines the most important challenges and promising future lines of research. We also provide a taxonomy for observational causal and equation discovery, point out connections, and showcase a complete set of case studies in Earth and climate sciences, fluid dynamics and mechanics, and the neurosciences. This review demonstrates that discovering fundamental laws and causal relations by observing natural phenomena is being revolutionised with the efficient exploitation of observational data, modern machine learning algorithms and the interaction with domain knowledge. Exciting times are ahead with many challenges and opportunities to improve our understanding of complex systems.Comment: 137 page

    Discovering causal relations and equations from data

    Get PDF
    Physics is a field of science that has traditionally used the scientific method to answer questions about why natural phenomena occur and to make testable models that explain the phenomena. Discovering equations, laws, and principles that are invariant, robust, and causal has been fundamental in physical sciences throughout the centuries. Discoveries emerge from observing the world and, when possible, performing interventions on the system under study. With the advent of big data and data-driven methods, the fields of causal and equation discovery have developed and accelerated progress in computer science, physics, statistics, philosophy, and many applied fields. This paper reviews the concepts, methods, and relevant works on causal and equation discovery in the broad field of physics and outlines the most important challenges and promising future lines of research. We also provide a taxonomy for data-driven causal and equation discovery, point out connections, and showcase comprehensive case studies in Earth and climate sciences, fluid dynamics and mechanics, and the neurosciences. This review demonstrates that discovering fundamental laws and causal relations by observing natural phenomena is revolutionised with the efficient exploitation of observational data and simulations, modern machine learning algorithms and the combination with domain knowledge. Exciting times are ahead with many challenges and opportunities to improve our understanding of complex systems

    Relating Spontaneous Activity and Cognitive States via NeuroDynamic Modeling

    Get PDF
    Stimulus-free brain dynamics form the basis of current knowledge concerning functional integration and segregation within the human brain. These relationships are typically described in terms of resting-state brain networks—regions which spontaneously coactivate. However, despite the interest in the anatomical mechanisms and biobehavioral correlates of stimulus-free brain dynamics, little is known regarding the relation between spontaneous brain dynamics and task-evoked activity. In particular, no computational framework has been previously proposed to unite spontaneous and task dynamics under a single, data-driven model. Model development in this domain will provide new insight regarding the mechanisms by which exogeneous stimuli and intrinsic neural circuitry interact to shape human cognition. The current work bridges this gap by deriving and validating a new technique, termed Mesoscale Individualized NeuroDynamic (MINDy) modeling, to estimate large-scale neural population models for individual human subjects using resting-state fMRI. A combination of ground-truth simulations and test-retest data are used to demonstrate that the approach is robust to various forms of noise, motion, and data processing choices. The MINDy formalism is then extended to simultaneously estimating neural population models and the neurovascular coupling which gives rise to BOLD fMRI. In doing so, I develop and validate a new optimization framework for simultaneously estimating system states and parameters. Lastly, MINDy models derived from resting-state data are used to predict task-based activity and remove the effects of intrinsic dynamics. Removing the MINDy model predictions from task fMRI, enables separation of exogenously-driven components of activity from their indirect consequences (the model predictions). Results demonstrate that removing the predicted intrinsic dynamics improves detection of event-triggered and sustained responses across four cognitive tasks. Together, these findings validate the MINDy framework and demonstrate that MINDy models predict brain dynamics across contexts. These dynamics contribute to the variance of task-evoked brain activity between subjects. Removing the influence of intrinsic dynamics improves the estimation of task effects

    Modelling human choices: MADeM and decision‑making

    Get PDF
    Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)

    Machine Learning As Tool And Theory For Computational Neuroscience

    Get PDF
    Computational neuroscience is in the midst of constructing a new framework for understanding the brain based on the ideas and methods of machine learning. This is effort has been encouraged, in part, by recent advances in neural network models. It is also driven by a recognition of the complexity of neural computation and the challenges that this poses for neuroscience’s methods. In this dissertation, I first work to describe these problems of complexity that have prompted a shift in focus. In particular, I develop machine learning tools for neurophysiology that help test whether tuning curves and other statistical models in fact capture the meaning of neural activity. Then, taking up a machine learning framework for understanding, I consider theories about how neural computation emerges from experience. Specifically, I develop hypotheses about the potential learning objectives of sensory plasticity, the potential learning algorithms in the brain, and finally the consequences for sensory representations of learning with such algorithms. These hypotheses pull from advances in several areas of machine learning, including optimization, representation learning, and deep learning theory. Each of these subfields has insights for neuroscience, offering up links for a chain of knowledge about how we learn and think. Together, this dissertation helps to further an understanding of the brain in the lens of machine learning
    corecore