3 research outputs found

    Optimizing Laying Hen Diet using Multi-Swarm Particle Swarm Optimization

    Get PDF
    Formulating animal diet by accounting fluctuating cost, nutrient requirement, balanced amino acids, and maximum composition simultaneously is a difficult and complex task. Manual formulation and Linear Programming encounter difficulty to solve this problem. Furthermore, the complexity of laying hen diet problem is change through ingredient choices. Thus, an advanced technique to enhance formula quality is a vital necessity. This paper proposes the Multi-Swarm Particle Swarm Optimization (MSPSO) to enhance the diversity of particles and prevent premature convergence in PSO. MSPSO work cooperatively and competitively to optimize laying hen diet and produce improved and stable formula than Genetic Algorithm, Hybridization of Adaptive Genetic Algorithm and Simulated Annealing, and Standard Particle Swarm Optimization with less time complexity. In addition, swarm size, iteration, and inertia weight parameters are investigated and show that swarm size of 50 for each sub-swarm, total iteration of 16,000, and inertia weight of 6.0 should be used as a good parameter for MSPSO to optimize laying hen diet

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp
    corecore