392 research outputs found

    A versatile biomimetic controller for contact tooling and haptic exploration

    Get PDF
    International audienceThis article presents a versatile controller that enables various contact tooling tasks with minimal prior knowledge of the tooled surface. The controller is derived from results of neuroscience studies that investigated the neural mechanisms utilized by humans to control and learn complex interactions with the environment. We demonstrate here the versatility of this controller in simulations of cutting, drilling and surface exploration tasks, which would normally require different control paradigms. We also present results on the exploration of an unknown surface with a 7-DOF manipulator, where the robot builds a 3D surface map of the surface profile and texture while applying constant force during motion. Our controller provides a unified control framework encompassing behaviors expected from the different specialized control paradigms like position control, force control and impedance control

    Biomimetic Manipulator Control Design for Bimanual Tasks in the Natural Environment

    Get PDF
    As robots become more prolific in the human environment, it is important that safe operational procedures are introduced at the same time; typical robot control methods are often very stiff to maintain good positional tracking, but this makes contact (purposeful or accidental) with the robot dangerous. In addition, if robots are to work cooperatively with humans, natural interaction between agents will make tasks easier to perform with less effort and learning time. Stability of the robot is particularly important in this situation, especially as outside forces are likely to affect the manipulator when in a close working environment; for example, a user leaning on the arm, or task-related disturbance at the end-effector. Recent research has discovered the mechanisms of how humans adapt the applied force and impedance during tasks. Studies have been performed to apply this adaptation to robots, with promising results showing an improvement in tracking and effort reduction over other adaptive methods. The basic algorithm is straightforward to implement, and allows the robot to be compliant most of the time and only stiff when required by the task. This allows the robot to work in an environment close to humans, but also suggests that it could create a natural work interaction with a human. In addition, no force sensor is needed, which means the algorithm can be implemented on almost any robot. This work develops a stable control method for bimanual robot tasks, which could also be applied to robot-human interactive tasks. A dynamic model of the Baxter robot is created and verified, which is then used for controller simulations. The biomimetic control algorithm forms the basis of the controller, which is developed into a hybrid control system to improve both task-space and joint-space control when the manipulator is disturbed in the natural environment. Fuzzy systems are implemented to remove the need for repetitive and time consuming parameter tuning, and also allows the controller to actively improve performance during the task. Experimental simulations are performed, and demonstrate how the hybrid task/joint-space controller performs better than either of the component parts under the same conditions. The fuzzy tuning method is then applied to the hybrid controller, which is shown to slightly improve performance as well as automating the gain tuning process. In summary, a novel biomimetic hybrid controller is presented, with a fuzzy mechanism to avoid the gain tuning process, finalised with a demonstration of task-suitability in a bimanual-type situation.EPSR

    Learning to push and learning to move: The adaptive control of contact forces

    Get PDF
    To be successful at manipulating objects one needs to apply simultaneously well controlled movements and contact forces. We present a computational theory of how the brain may successfully generate a vast spectrum of interactive behaviors by combining two independent processes. One process is competent to control movements in free space and the other is competent to control contact forces against rigid constraints. Free space and rigid constraints are singularities at the boundaries of a continuum of mechanical impedance. Within this continuum, forces and motions occur in \u201ccompatible pairs\u201d connected by the equations of Newtonian dynamics. The force applied to an object determines its motion. Conversely, inverse dynamics determine a unique force trajectory from a movement trajectory. In this perspective, we describe motor learning as a process leading to the discovery of compatible force/motion pairs. The learned compatible pairs constitute a local representation of the environment's mechanics. Experiments on force field adaptation have already provided us with evidence that the brain is able to predict and compensate the forces encountered when one is attempting to generate a motion. Here, we tested the theory in the dual case, i.e., when one attempts at applying a desired contact force against a simulated rigid surface. If the surface becomes unexpectedly compliant, the contact point moves as a function of the applied force and this causes the applied force to deviate from its desired value. We found that, through repeated attempts at generating the desired contact force, subjects discovered the unique compatible hand motion. When, after learning, the rigid contact was unexpectedly restored, subjects displayed after effects of learning, consistent with the concurrent operation of a motion control system and a force control system. Together, theory and experiment support a new and broader view of modularity in the coordinated control of forces and motions

    Force, impedance and trajectory learning for contact tooling and haptic identification

    Get PDF
    Humans can skilfully use tools and interact with the environment by adapting their movement trajectory, contact force, and impedance. Motivated by the human versatility, we develop here a robot controller that concurrently adapts feedforward force, impedance, and reference trajectory when interacting with an unknown environment. In particular, the robot's reference trajectory is adapted to limit the interaction force and maintain it at a desired level, while feedforward force and impedance adaptation compensates for the interaction with the environment. An analysis of the interaction dynamics using Lyapunov theory yields the conditions for convergence of the closed-loop interaction mediated by this controller. Simulations exhibit adaptive properties similar to human motor adaptation. The implementation of this controller for typical interaction tasks including drilling, cutting, and haptic exploration shows that this controller can outperform conventional controllers in contact tooling

    Learning compliant robotic movements based on biomimetic motor adaptation

    Get PDF
    It is one of the great challenges for a robot to learn compliant movements in interaction tasks. The robot can easily acquire motion skills from a human tutor by kinematics demonstration, however, this becomes much more difficult when it comes to the compliant skills. This paper aims to provide a possible solution to address this problem by proposing a two-stage approach. In the first stage, the human tutor demonstrates the robot how to perform a task, during which only motion trajectories are recorded without the involvement of force sensing. A dynamical movement primitives (DMPs) model which can generate human-like motion is then used to encode the kinematics data. In the second stage, a biomimetic controller, which is inspired by the neuroscience findings in human motor learning, is employed to obtain the desired robotic compliant behaviors by online adapting the impedance profiles and the feedforward torques simultaneously. Several tests are conducted to validate the effectiveness of the proposed approach

    A unified parametric representation for robotic compliant skills with adaptation of impedance and force

    Get PDF
    Robotic compliant manipulation is a very challenging but urgent research spot in the domain of robotics. One difficulty lies in the lack of a unified representation for encoding and learning of compliant profiles. This article aims to introduce a novel learning and control framework to address this problem: 1) we provide a parametric representation that enables a compliant skill to be encoded in a parametric space and allows a robot to learn compliant manipulation skills based on motion and force information collected from human demonstrations; and 2) the updating laws of the compliant profiles, including impedance and force profiles, are derived from a biomimetic control strategy based on the human motor learning principles. Our approach enables the simultaneous adaptation of impedance and feedforward force online during robot’s reproduction of the demonstrated tasks to deal with task dynamics and external interferences. The proposed approach is verified based on both simulation and real-world task scenarios

    Mechanisms of motor learning: by humans, for robots

    No full text
    Whenever we perform a movement and interact with objects in our environment, our central nervous system (CNS) adapts and controls the redundant system of muscles actuating our limbs to produce suitable forces and impedance for the interaction. As modern robots are increasingly used to interact with objects, humans and other robots, they too require to continuously adapt the interaction forces and impedance to the situation. This thesis investigated the motor mechanisms in humans through a series of technical developments and experiments, and utilized the result to implement biomimetic motor behaviours on a robot. Original tools were first developed, which enabled two novel motor imaging experiments using functional magnetic resonance imaging (fMRI). The first experiment investigated the neural correlates of force and impedance control to understand the control structure employed by the human brain. The second experiment developed a regressor free technique to detect dynamic changes in brain activations during learning, and applied this technique to investigate changes in neural activity during adaptation to force fields and visuomotor rotations. In parallel, a psychophysical experiment investigated motor optimization in humans in a task characterized by multiple error-effort optima. Finally a computational model derived from some of these results was implemented to exhibit human like control and adaptation of force, impedance and movement trajectory in a robot

    A framework of human–robot coordination based on game theory and policy iteration

    Get PDF
    In this paper, we propose a framework to analyze the interactive behaviors of human and robot in physical interactions. Game theory is employed to describe the system under study, and policy iteration is adopted to provide a solution of Nash equilibrium. The human’s control objective is estimated based on the measured interaction force, and it is used to adapt the robot’s objective such that human-robot coordination can be achieved. The validity of the proposed method is verified through a rigorous proof and experimental studies

    An approach for robotic leaning inspired by biomimetic adaptive control

    Get PDF
    How to enable robotic compliant manipulation has become a critical problem in the robotics field. Inspired by a biomimetic adaptive control strategy, this work presents a novel representation model named human-like compliant movement primitives (Hl-CMPs) which could allow a robot to learn human-like compliant behaviours. The state-of-the-art approaches can hardly learn complete compliant profiles for a specific task. Comparatively, our model can encode task-specific parametric movement trajectories, correspondingly associated with dynamic trajectories including both impedance and feedforward force profiles. The compliant profiles are learned based on a biomimetic control strategy derived from the human motor learning in the muscle space, enabling the robot to simultaneously learn the impedance and the force while executing the movement trajectories obtained from human demonstration. Furthermore, both the kinematic and the dynamic profiles are learned in the parametric space, thus enabling the representation of a skill using corresponding parameters (i.e, task-specific parameters)
    • 

    corecore