169 research outputs found

    Transcending conventional biometry frontiers: Diffusive Dynamics PPG Biometry

    Get PDF
    In the first half of the 20th century, a first pulse oximeter was available to measure blood flow changes in the peripheral vascular net. However, it was not until recent times the PhotoPlethysmoGraphic (PPG) signal used to monitor many physiological parameters in clinical environments. Over the last decade, its use has extended to the area of biometrics, with different methods that allow the extraction of characteristic features of each individual from the PPG signal morphology, highly varying with time and the physical states of the subject. In this paper, we present a novel PPG-based biometric authentication system based on convolutional neural networks. Contrary to previous approaches, our method extracts the PPG signal's biometric characteristics from its diffusive dynamics, characterized by geometric patterns image in the (p, q)-planes specific to the 0-1 test. The diffusive dynamics of the PPG signal are strongly dependent on the vascular bed's biostructure, which is unique to each individual, and highly stable over time and other psychosomatic conditions. Besides its robustness, our biometric method is anti-spoofing, given the convoluted nature of the blood network. Our biometric authentication system reaches very low Equal Error Rates (ERRs) with a single attempt, making it possible, by the very nature of the envisaged solution, to implement it in miniature components easily integrated into wearable biometric systems.Comment: 18 pages, 6 figures, 4 table

    Identifikasi Personal Biometrik Berdasarkan Sinyal Photoplethysmography dari Detak Jantung

    Get PDF
    Sistem biometrik sangat berguna untuk membedakan karakteristik individu seseorang. Sistem identifikasi yang paling banyak digunakan diantaranya berdasarkan metode fingerprint, face detection, iris atu hand geometry. Penelitian ini mencoba untuk meningkatkan sistem biometrik menggunakan sinyal Photoplethysmography dari detak jantung. Algoritma yang diusulkan menggunakan seluruh ektraksi fitur yang didapatkan melalui sistem untuk pengenalan biometrik. Efesiensi dari algoritma yang diusulkan didemonstrasikan oleh hasil percobaan yang didapatkan menggunakan metode klasifikasi Multilayer Perceptron, Naïve Bayes dan Random Forest berdasarkan fitur ekstraksi yang didapatkan dari proses sinyal prosesing. Didapatkan 51 subjek pada penelitian ini; sinyal PPG signals dari setiap individu didapatkan melalui sensor pada dua rentang waktu yang berbeda. 30 fitur karakteristik didapatkan dari setiap periode dan kemudian digunakan untuk proses klasifikasi. Sistem klasifikasi menggunakan metode Multilayer Perceptron, Naïve Bayes dan Random Forest; nilai true positive dari masing-masing metode adalah 94.6078 %, 92.1569 % dan 90.3922 %. Hasil yang didapatkan menunjukkan bahwa seluruh algoritma yang diusulkan dan sistem identifikasi biometrik dari pengembangan sinyal PPG ini sangat menjanjikan untuk sistem pengenalan individu manusia. ============================================================================================= The importance of biometric system can distinguish the uniqueness of personal characteristics. The most popular identification systems have concerned the method based on fingerprint, face detection, iris or hand geometry. This study is trying to improve the biometric system using Photoplethysmography signal by heart rate. The proposed algorithm calculates the contribution of all extracted features to biometric recognition. The efficiency of the proposed algorithms is demonstrated by the experiment results obtained from the Multilayer Perceptron, Naïve Bayes and Random Forest classifier applications based on the extracted features. There are fifty one persons joined for the experiments; the PPG signals of each person were recorded for two different time spans. 30 characteristic features were extracted for each period and these characteristic features are used for the purpose of classification. The results were evaluated via the Multilayer Perceptron, Naïve Bayes and Random Forest classifier models; the true positive rates are then 94.6078 %, 92.1569 % and 90.3922 %, respectively. The obtained results showed that both the proposed algorithm and the biometric identification model based on this developed PPG signal are very promising for contact less recognizing systems

    Seeing Red: PPG Biometrics Using Smartphone Cameras

    Full text link
    In this paper, we propose a system that enables photoplethysmogram (PPG)-based authentication by using a smartphone camera. PPG signals are obtained by recording a video from the camera as users are resting their finger on top of the camera lens. The signals can be extracted based on subtle changes in the video that are due to changes in the light reflection properties of the skin as the blood flows through the finger. We collect a dataset of PPG measurements from a set of 15 users over the course of 6-11 sessions per user using an iPhone X for the measurements. We design an authentication pipeline that leverages the uniqueness of each individual's cardiovascular system, identifying a set of distinctive features from each heartbeat. We conduct a set of experiments to evaluate the recognition performance of the PPG biometric trait, including cross-session scenarios which have been disregarded in previous work. We found that when aggregating sufficient samples for the decision we achieve an EER as low as 8%, but that the performance greatly decreases in the cross-session scenario, with an average EER of 20%.Comment: 8 pages, 15th IEEE Computer Society Workshop on Biometrics 202

    Evaluation of PPG Biometrics for Authentication in different states

    Full text link
    Amongst all medical biometric traits, Photoplethysmograph (PPG) is the easiest to acquire. PPG records the blood volume change with just combination of Light Emitting Diode and Photodiode from any part of the body. With IoT and smart homes' penetration, PPG recording can easily be integrated with other vital wearable devices. PPG represents peculiarity of hemodynamics and cardiovascular system for each individual. This paper presents non-fiducial method for PPG based biometric authentication. Being a physiological signal, PPG signal alters with physical/mental stress and time. For robustness, these variations cannot be ignored. While, most of the previous works focused only on single session, this paper demonstrates extensive performance evaluation of PPG biometrics against single session data, different emotions, physical exercise and time-lapse using Continuous Wavelet Transform (CWT) and Direct Linear Discriminant Analysis (DLDA). When evaluated on different states and datasets, equal error rate (EER) of 0.5%0.5\%-6%6\% was achieved for 4545-6060s average training time. Our CWT/DLDA based technique outperformed all other dimensionality reduction techniques and previous work.Comment: Accepted at 11th IAPR/IEEE International Conference on Biometrics, 2018. 6 pages, 6 figure

    Photoplethysmogram based biometric identification for twins incorporating gender variability

    Get PDF
    This study focuses on a Photoplethysmogram (PPG) based biometric identification for twins incorporating gender variability. To the best of our knowledge, little has been said pertaining to this research which identifies twins using PPG signals. PPG device has been widely used due to its advantages such as non-invasive, low cost and small in size which makes it a convenient analytical tool. PPG signals has the capability to ensure the person to be present during the acquisition process which suggest that PPG can provide liveness detection suitable for a biometric system which is not available in other biometric modalities such as fingerprint. A total of four couple of twins which consists of four female and four male subjects in age range between twenty two to thirty years old were used to assess the feasibility of the proposed system. The acquired PPG signals were then processed to remove unwanted noise using low pass filter. After that, multiple cycles of PPG waveforms were extracted and later classified using Radial Basis Function (RBF) and Bayes Network (BN) to categorize the subjects using the discriminant features to calculate and analyze the performance of this system. The outcome also provides a complimentary mechanism to detect twins besides using the current existing methods

    Shallow Neural Network for Biometrics from the ECG-WATCH

    Get PDF
    Applications such as surveillance, banking and healthcare deal with sensitive data whose confidentiality and integrity depends on accurate human recognition. In this sense, the crucial mechanism for performing an effective access control is authentication, which unequivocally yields user identity. In 2018, just in North America, around 445K identity thefts have been denounced. The most adopted strategy for automatic identity recognition uses a secret for encrypting and decrypting the authentication information. This approach works very well until the secret is kept safe. Electrocardiograms (ECGs) can be exploited for biometric purposes because both the physiological and geometrical differences in each human heart correspond to uniqueness in the ECG morphology. Compared with classical biometric techniques, e.g. fingerprints, ECG-based methods can definitely be considered a more reliable and safer way for user authentication due to ECG inherent robustness to circumvention, obfuscation and replay attacks. In this paper, the ECG WATCH, a non-expensive wristwatch for recording ECGs anytime, anywhere, in just 10 s, is proposed for user authentication. The ECG WATCH acquisitions have been used to train a shallow neural network, which has reached a 99% classification accuracy and 100% intruder recognition rate

    Biometric authentication using the PPG: A long-term feasibility study

    Get PDF
    The photoplethysmogram (PPG) is a biomedical signal that can be used to estimate volumetric blood flow changes in the peripheral circulation. During the past few years, several works have been published in order to assess the potential for PPGs to be used in biometric authentication systems, but results are inconclusive. In this paper we perform an analysis of the feasibility of using the PPG as a realistic biometric alternative in the long term. Several feature extractors (based on the time domain and the Karhunen–Loève transform) and matching metrics (Manhattan and Euclidean distances) have been tested using four different PPG databases (PRRB, MIMIC-II, Berry, and Nonin). We show that the false match rate (FMR) and false non-match rate (FNMR) values remain constant in different time instances for a selected threshold, which is essential for using the PPG for biometric authentication purposes. On the other hand, obtained equal error rate (EER) values for signals recorded during the same session range from 1.0% for high-quality signals recorded in controlled conditions to 8% for those recorded in conditions closer to real-world scenarios. Moreover, in certain scenarios, EER values rise up to 23.2% for signals recorded over different days, signaling that performance degradation could take place with time
    corecore