1,339 research outputs found

    Conceivable security risks and authentication techniques for smart devices

    Get PDF
    With the rapidly escalating use of smart devices and fraudulent transaction of users’ data from their devices, efficient and reliable techniques for authentication of the smart devices have become an obligatory issue. This paper reviews the security risks for mobile devices and studies several authentication techniques available for smart devices. The results from field studies enable a comparative evaluation of user-preferred authentication mechanisms and their opinions about reliability, biometric authentication and visual authentication techniques

    IEDs on the Road to Fingerprint Authentication : Biometrics have vulnerabilities that PINs and passwords don't

    Get PDF
    Almost every 2016 flagship mobile phone, whether Android or iOS-based, is set to come with an integrated fingerprint reader. The convenience benefits of fingerprint readers are clear to users, but is the underlying technology really ready for widespread adoption? This article explores some of the background of the challenge of secure user authentication on mobile devices, as well as recent weaknesses identified in the handling of fingerprints on many consumer devices. It also considers legislatory and social implications of the widespread adoption of fingerprint authentication. Finally, it attempts to look forward to some resulting problems we may encounter in the future

    Using Keystroke Dynamics and Location Verification Method for Mobile Banking Authentication.

    Get PDF
    With the rise of security attacks on mobile phones, traditional methods to authentication such as Personal Identification Numbers (PIN) and Passwords are becoming ineffective due to their limitations such as being easily forgettable, discloser, lost or stolen. Keystroke dynamics is a form of behavioral biometric based authentication where an analysis of how users type is monitored and used in authenticating users into a system. The use of location data provides a verification mechanism based on user’s location which can be obtained via their phones Global Positioning System (GPS) facility. This study evaluated existing authentication methods and their performance summarized. To address the limitations of traditional authentication methods this paper proposed an alternative authentication method that uses Keystroke dynamics and location data. To evaluate the proposed authentication method experiments were done through use of a prototype android mobile banking application that captured the typing behavior while logging in and location data from 60 users. The experiment results were lower compared to the previous studies provided in this paper with a False Rejection Rate (FRR) of 5.33% which is the percentage of access attempts by legitimate users that have been rejected by the system and a False Acceptance Rate (FAR) of 3.33% which is the percentage of access attempts by imposters that have been accepted by the system incorrectly, giving an Equal Error Rate (EER) of 4.3%.The outcome of this study demonstrated keystroke dynamics and location verification on PINs as an alternative authentication of mobile banking transactions building on current smartphones features with less implementation costs with no additional hardware compared to other biometric methods. Keywords: smartphones, biometric, mobile banking, keystroke dynamics, location verification, securit

    Mobile Authentication with NFC enabled Smartphones

    Get PDF
    Smartphones are becoming increasingly more deployed and as such new possibilities for utilizing the smartphones many capabilities for public and private use are arising. This project will investigate the possibility of using smartphones as a platform for authentication and access control, using near field communication (NFC). To achieve the necessary security for authentication and access control purposes, cryptographic concepts such as public keys, challenge-response and digital signatures are used. To focus the investigation a case study is performed based on the authentication and access control needs of an educational institutions student ID. To gain a more practical understanding of the challenges mobile authentication encounters, a prototype has successfully been developed on the basis of the investigation. The case study performed in this project argues that NFC as a standalone technology is not yet mature to support the advanced communication required by this case. However, combining NFC with other communication technologies such as Bluetooth has proven to be effective. As a result, a general evaluation has been performed on several aspects of the prototype, such as cost-effectiveness, usability, performance and security to evaluate the viability of mobile authentication

    QR Code Payment in Indonesia and Its Application on Mobile Banking

    Get PDF
    The technology innovation makes it easy for us to connect to various services. Banking transactions that previously could only be served only at Branch Offices, ATMs (Automatic Teller Machines) and EDC (Electronic Data Capture), now they can be accessed online. Balance information, fund transfers, credit purchases, PLN tokens, payment of PAM and BPJS bills, all can be done through Mobile Banking application from smartphones. This study aims to find out how QR Code on Mobile Banking provides convenience in making payment transactions and how it can be used safely. The research was conducted through literature study, observation, and distribution of questionnaires to 30 respondents to identify the system acceptance. Payment Model QR Code on Mobile Banking can be widely used as an alternative of cash payment through a smartphone. The developed system does not only for merchant payment but can be used for person to person payment. The result of this research is a prototype for QR Code Payment on OCBC NISP Mobile Banking which can be used as an alternative payment system and integrated with fund source account without the need to top up the transfer

    oBiometrics: A Software protection scheme using biometric-based obfuscation

    Get PDF
    This paper proposes to integrate biometric-based key generation into an obfuscated interpretation algorithm to protect authentication application software from illegitimate use or reverse-engineering. This is especially necessary for mCommerce because application programmes on mobile devices, such as Smartphones and Tablet-PCs are typically open for misuse by hackers. Therefore, the scheme proposed in this paper ensures that a correct interpretation / execution of the obfuscated program code of the authentication application requires a valid biometric generated key of the actual person to be authenticated, in real-time. Without this key, the real semantics of the program can not be understood by an attacker even if he/she gains access to this application code. Furthermore, the security provided by this scheme can be a vital aspect in protecting any application running on mobile devices that are increasingly used to perform business/financial or other security related applications, but are easily lost or stolen. The scheme starts by creating a personalised copy of any application based on the biometric key generated during an enrolment process with the authenticator as well as a nuance created at the time of communication between the client and the authenticator. The obfuscated code is then shipped to the client’s mobile devise and integrated with real-time biometric extracted data of the client to form the unlocking key during execution. The novelty of this scheme is achieved by the close binding of this application program to the biometric key of the client, thus making this application unusable for others. Trials and experimental results on biometric key generation, based on client's faces, and an implemented scheme prototype, based on the Android emulator, prove the concept and novelty of this proposed scheme
    • …
    corecore