41,827 research outputs found

    Multimodal person recognition for human-vehicle interaction

    Get PDF
    Next-generation vehicles will undoubtedly feature biometric person recognition as part of an effort to improve the driving experience. Today's technology prevents such systems from operating satisfactorily under adverse conditions. A proposed framework for achieving person recognition successfully combines different biometric modalities, borne out in two case studies

    An Efficient Secure Multimodal Biometric Fusion Using Palmprint and Face Image

    Get PDF
    Biometrics based personal identification is regarded as an effective method for automatically recognizing, with a high confidence a person’s identity. A multimodal biometric systems consolidate the evidence presented by multiple biometric sources and typically better recognition performance compare to system based on a single biometric modality. This paper proposes an authentication method for a multimodal biometric system identification using two traits i.e. face and palmprint. The proposed system is designed for application where the training data contains a face and palmprint. Integrating the palmprint and face features increases robustness of the person authentication. The final decision is made by fusion at matching score level architecture in which features vectors are created independently for query measures and are then compared to the enrolment template, which are stored during database preparation. Multimodal biometric system is developed through fusion of face and palmprint recognition

    Feature-domain super-resolution framework for Gabor-based face and iris recognition

    Get PDF
    The low resolution of images has been one of the major limitations in recognising humans from a distance using their biometric traits, such as face and iris. Superresolution has been employed to improve the resolution and the recognition performance simultaneously, however the majority of techniques employed operate in the pixel domain, such that the biometric feature vectors are extracted from a super-resolved input image. Feature-domain superresolution has been proposed for face and iris, and is shown to further improve recognition performance by capitalising on direct super-resolving the features which are used for recognition. However, current feature-domain superresolution approaches are limited to simple linear features such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), which are not the most discriminant features for biometrics. Gabor-based features have been shown to be one of the most discriminant features for biometrics including face and iris. This paper proposes a framework to conduct super-resolution in the non-linear Gabor feature domain to further improve the recognition performance of biometric systems. Experiments have confirmed the validity of the proposed approach, demonstrating superior performance to existing linear approaches for both face and iris biometrics

    Face recognition technologies for evidential evaluation of video traces

    Get PDF
    Human recognition from video traces is an important task in forensic investigations and evidence evaluations. Compared with other biometric traits, face is one of the most popularly used modalities for human recognition due to the fact that its collection is non-intrusive and requires less cooperation from the subjects. Moreover, face images taken at a long distance can still provide reasonable resolution, while most biometric modalities, such as iris and fingerprint, do not have this merit. In this chapter, we discuss automatic face recognition technologies for evidential evaluations of video traces. We first introduce the general concepts in both forensic and automatic face recognition , then analyse the difficulties in face recognition from videos . We summarise and categorise the approaches for handling different uncontrollable factors in difficult recognition conditions. Finally we discuss some challenges and trends in face recognition research in both forensics and biometrics . Given its merits tested in many deployed systems and great potential in other emerging applications, considerable research and development efforts are expected to be devoted in face recognition in the near future

    Homomorphic Encryption for Speaker Recognition: Protection of Biometric Templates and Vendor Model Parameters

    Full text link
    Data privacy is crucial when dealing with biometric data. Accounting for the latest European data privacy regulation and payment service directive, biometric template protection is essential for any commercial application. Ensuring unlinkability across biometric service operators, irreversibility of leaked encrypted templates, and renewability of e.g., voice models following the i-vector paradigm, biometric voice-based systems are prepared for the latest EU data privacy legislation. Employing Paillier cryptosystems, Euclidean and cosine comparators are known to ensure data privacy demands, without loss of discrimination nor calibration performance. Bridging gaps from template protection to speaker recognition, two architectures are proposed for the two-covariance comparator, serving as a generative model in this study. The first architecture preserves privacy of biometric data capture subjects. In the second architecture, model parameters of the comparator are encrypted as well, such that biometric service providers can supply the same comparison modules employing different key pairs to multiple biometric service operators. An experimental proof-of-concept and complexity analysis is carried out on the data from the 2013-2014 NIST i-vector machine learning challenge
    corecore