2,769 research outputs found

    Seamless and Secure VR: Adapting and Evaluating Established Authentication Systems for Virtual Reality

    Get PDF
    Virtual reality (VR) headsets are enabling a wide range of new opportunities for the user. For example, in the near future users may be able to visit virtual shopping malls and virtually join international conferences. These and many other scenarios pose new questions with regards to privacy and security, in particular authentication of users within the virtual environment. As a first step towards seamless VR authentication, this paper investigates the direct transfer of well-established concepts (PIN, Android unlock patterns) into VR. In a pilot study (N = 5) and a lab study (N = 25), we adapted existing mechanisms and evaluated their usability and security for VR. The results indicate that both PINs and patterns are well suited for authentication in VR. We found that the usability of both methods matched the performance known from the physical world. In addition, the private visual channel makes authentication harder to observe, indicating that authentication in VR using traditional concepts already achieves a good balance in the trade-off between usability and security. The paper contributes to a better understanding of authentication within VR environments, by providing the first investigation of established authentication methods within VR, and presents the base layer for the design of future authentication schemes, which are used in VR environments only

    CGAMES'2009

    Get PDF

    Authenticated Digital Avatars on Metaverse by Cyber Security Procedures

    Get PDF
    Metaverse is the  next generation Internet, aims to build a fully immersive, hyper spatiotemporal and self sustaining virtual shared space for humans to play, work, shop and socialize. In metaverse, users are  represented as digital avatars and using identity, user can shuttle across various virtual worlds (i.e., sub-metaverses) to experience a digital life, as well as make digital creations and economic interactions supported by physical infrastructures and the metaverse engine. Virtual reality headsets are the main devices used to access the Metaverse. Privacy and security concerns of the metaverse. The users need to verify their identity to log into the metaverse platforms, and the security of this phase becomes vital. In this paper, the user authentication methods such as Information-based authentication, biometric based authentication, and multi-model methods are reviewed and compared in terms of users security but in some cases these methods are failed to secure from cyber attacks. In this paper, we proposed,Token-based authentication method to enhance the security for the users to access and work on  the virtual environment

    Trust and Privacy Permissions for an Ambient World

    Get PDF
    Ambient intelligence (AmI) and ubiquitous computing allow us to consider a future where computation is embedded into our daily social lives. This vision raises its own important questions and augments the need to understand how people will trust such systems and at the same time achieve and maintain privacy. As a result, we have recently conducted a wide reaching study of people’s attitudes to potential AmI scenarios with a view to eliciting their privacy concerns. This chapter describes recent research related to privacy and trust with regard to ambient technology. The method used in the study is described and findings discussed

    The World as an Interface: Exploring the Ethical Challenges of the Emerging Metaverse

    Get PDF
    Mixed reality is emerging as the next phase of personal computing. Once Apple Glass is released augmented and mixed reality will go mainstream and the impact on our behaviour will be as dramatic as when the iPhone was released. In parallel, what used to be 2D webpages are becoming 3D worlds, collectively forming a meta universe of virtual or mixed reality domains -the ‘Metaverse’. Mixed reality is precisely where the best affordances of the digital and analogue worlds should work together to create entirely new interactive learning, social and economic opportunities. In this paper we reflect on how the physical world will itself become an interface making reality even more machine-readable, click-able, and searchable. We further propose how society will need to ensure that the appropriate boundary management is in place to allow us as co-creators of the metaverse to protect our ethical rights of privacy, integrity, and autonomy

    Biomove: Biometric user identification from human kinesiological movements for virtual reality systems

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Virtual reality (VR) has advanced rapidly and is used for many entertainment and business purposes. The need for secure, transparent and non-intrusive identification mechanisms is important to facilitate users’ safe participation and secure experience. People are kinesiologically unique, having individual behavioral and movement characteristics, which can be leveraged and used in security sensitive VR applications to compensate for users’ inability to detect potential observational attackers in the physical world. Additionally, such method of identification using a user’s kinesiological data is valuable in common scenarios where multiple users simultaneously participate in a VR environment. In this paper, we present a user study (n = 15) where our participants performed a series of controlled tasks that require physical movements (such as grabbing, rotating and dropping) that could be decomposed into unique kinesiological patterns while we monitored and captured their hand, head and eye gaze data within the VR environment. We present an analysis of the data and show that these data can be used as a biometric discriminant of high confidence using machine learning classification methods such as kNN or SVM, thereby adding a layer of security in terms of identification or dynamically adapting the VR environment to the users’ preferences. We also performed a whitebox penetration testing with 12 attackers, some of whom were physically similar to the participants. We could obtain an average identification confidence value of 0.98 from the actual participants’ test data after the initial study and also a trained model classification accuracy of 98.6%. Penetration testing indicated all attackers resulted in confidence values of less than 50% (\u3c50%), although physically similar attackers had higher confidence values. These findings can help the design and development of secure VR systems

    Biomove: Biometric user identification from human kinesiological movements for virtual reality systems

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Virtual reality (VR) has advanced rapidly and is used for many entertainment and business purposes. The need for secure, transparent and non-intrusive identification mechanisms is important to facilitate users’ safe participation and secure experience. People are kinesiologically unique, having individual behavioral and movement characteristics, which can be leveraged and used in security sensitive VR applications to compensate for users’ inability to detect potential observational attackers in the physical world. Additionally, such method of identification using a user’s kinesiological data is valuable in common scenarios where multiple users simultaneously participate in a VR environment. In this paper, we present a user study (n = 15) where our participants performed a series of controlled tasks that require physical movements (such as grabbing, rotating and dropping) that could be decomposed into unique kinesiological patterns while we monitored and captured their hand, head and eye gaze data within the VR environment. We present an analysis of the data and show that these data can be used as a biometric discriminant of high confidence using machine learning classification methods such as kNN or SVM, thereby adding a layer of security in terms of identification or dynamically adapting the VR environment to the users’ preferences. We also performed a whitebox penetration testing with 12 attackers, some of whom were physically similar to the participants. We could obtain an average identification confidence value of 0.98 from the actual participants’ test data after the initial study and also a trained model classification accuracy of 98.6%. Penetration testing indicated all attackers resulted in confidence values of less than 50% (\u3c50%), although physically similar attackers had higher confidence values. These findings can help the design and development of secure VR systems

    Investigating the Third Dimension for Authentication in Immersive Virtual Reality and in the Real World

    Get PDF
    Immersive Virtual Reality (IVR) is a growing 3D environment, where social and commercial applications will require user authentication. Similarly, smart homes in the real world (RW), offer an opportunity to authenticate in the third dimension. For both environments, there is a gap in understanding which elements of the third dimension can be leveraged to improve usability and security of authentication. In particular, investigating transferability of findings between these environments would help towards understanding how rapid prototyping of authentication concepts can be achieved in this context. We identify key elements from prior research that are promising for authentication in the third dimension. Based on these, we propose a concept in which users' authenticate by selecting a series of 3D objects in a room using a pointer. We created a virtual 3D replica of a real world room, which we leverage to evaluate and compare the factors that impact the usability and security of authentication in IVR and RW. In particular, we investigate the influence of randomized user and object positions, in a series of user studies (N=48). We also evaluate shoulder surfing by real world bystanders for IVR (N=75). Our results show that 3D passwords within our concept are resistant against shoulder surfing attacks. Interactions are faster in RW compared to IVR, yet workload is comparable

    Meetings and Meeting Modeling in Smart Environments

    Get PDF
    In this paper we survey our research on smart meeting rooms and its relevance for augmented reality meeting support and virtual reality generation of meetings in real time or off-line. The research reported here forms part of the European 5th and 6th framework programme projects multi-modal meeting manager (M4) and augmented multi-party interaction (AMI). Both projects aim at building a smart meeting environment that is able to collect multimodal captures of the activities and discussions in a meeting room, with the aim to use this information as input to tools that allow real-time support, browsing, retrieval and summarization of meetings. Our aim is to research (semantic) representations of what takes place during meetings in order to allow generation, e.g. in virtual reality, of meeting activities (discussions, presentations, voting, etc.). Being able to do so also allows us to look at tools that provide support during a meeting and at tools that allow those not able to be physically present during a meeting to take part in a virtual way. This may lead to situations where the differences between real meeting participants, human-controlled virtual participants and (semi-) autonomous virtual participants disappear
    corecore