185 research outputs found

    Cascade of classifier ensembles for reliable medical image classification

    Get PDF
    Medical image analysis and recognition is one of the most important tools in modern medicine. Different types of imaging technologies such as X-ray, ultrasonography, biopsy, computed tomography and optical coherence tomography have been widely used in clinical diagnosis for various kinds of diseases. However, in clinical applications, it is usually time consuming to examine an image manually. Moreover, there is always a subjective element related to the pathological examination of an image. This produces the potential risk of a doctor to make a wrong decision. Therefore, an automated technique will provide valuable assistance for physicians. By utilizing techniques from machine learning and image analysis, this thesis aims to construct reliable diagnostic models for medical image data so as to reduce the problems faced by medical experts in image examination. Through supervised learning of the image data, the diagnostic model can be constructed automatically. The process of image examination by human experts is very difficult to simulate, as the knowledge of medical experts is often fuzzy and not easy to be quantified. Therefore, the problem of automatic diagnosis based on images is usually converted to the problem of image classification. For the image classification tasks, using a single classifier is often hard to capture all aspects of image data distributions. Therefore, in this thesis, a classifier ensemble based on random subspace method is proposed to classify microscopic images. The multi-layer perceptrons are used as the base classifiers in the ensemble. Three types of feature extraction methods are selected for microscopic image description. The proposed method was evaluated on two microscopic image sets and showed promising results compared with the state-of-art results. In order to address the classification reliability in biomedical image classification problems, a novel cascade classification system is designed. Two random subspace based classifier ensembles are serially connected in the proposed system. In the first stage of the cascade system, an ensemble of support vector machines are used as the base classifiers. The second stage consists of a neural network classifier ensemble. Using the reject option, the images whose classification results cannot achieve the predefined rejection threshold at the current stage will be passed to the next stage for further consideration. The proposed cascade system was evaluated on a breast cancer biopsy image set and two UCI machine learning datasets, the experimental results showed that the proposed method can achieve high classification reliability and accuracy with small rejection rate. Many computer aided diagnosis systems face the problem of imbalance data. The datasets used for diagnosis are often imbalanced as the number of normal cases is usually larger than the number of the disease cases. Classifiers that generalize over the data are not the most appropriate choice in such an imbalanced situation. To tackle this problem, a novel one-class classifier ensemble is proposed. The Kernel Principle Components are selected as the base classifiers in the ensemble; the base classifiers are trained by different types of image features respectively and then combined using a product combining rule. The proposed one-class classifier ensemble is also embedded into the cascade scheme to improve classification reliability and accuracy. The proposed method was evaluated on two medical image sets. Favorable results were obtained comparing with the state-of-art results

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    Statistical Data Modeling and Machine Learning with Applications

    Get PDF
    The modeling and processing of empirical data is one of the main subjects and goals of statistics. Nowadays, with the development of computer science, the extraction of useful and often hidden information and patterns from data sets of different volumes and complex data sets in warehouses has been added to these goals. New and powerful statistical techniques with machine learning (ML) and data mining paradigms have been developed. To one degree or another, all of these techniques and algorithms originate from a rigorous mathematical basis, including probability theory and mathematical statistics, operational research, mathematical analysis, numerical methods, etc. Popular ML methods, such as artificial neural networks (ANN), support vector machines (SVM), decision trees, random forest (RF), among others, have generated models that can be considered as straightforward applications of optimization theory and statistical estimation. The wide arsenal of classical statistical approaches combined with powerful ML techniques allows many challenging and practical problems to be solved. This Special Issue belongs to the section “Mathematics and Computer Science”. Its aim is to establish a brief collection of carefully selected papers presenting new and original methods, data analyses, case studies, comparative studies, and other research on the topic of statistical data modeling and ML as well as their applications. Particular attention is given, but is not limited, to theories and applications in diverse areas such as computer science, medicine, engineering, banking, education, sociology, economics, among others. The resulting palette of methods, algorithms, and applications for statistical modeling and ML presented in this Special Issue is expected to contribute to the further development of research in this area. We also believe that the new knowledge acquired here as well as the applied results are attractive and useful for young scientists, doctoral students, and researchers from various scientific specialties

    Improving classification of error related potentials using novel feature extraction and classification algorithms for an assistive robotic device

    Get PDF
    We evaluated the proposed feature extraction algorithm and the classifier, and we showed that the performance surpassed the state of the art algorithms in error detection. Advances in technology are required to improve the quality of life of a person with a severe disability who has lost their independence of movement in their daily life. Brain-computer interface (BCI) is a possible technology to re-establish a sense of independence for the person with a severe disability through direct communication between the brain and an electronic device. To enhance the symbiotic interface between the person and BCI its accuracy and robustness should be improved across all age groups. This thesis aims to address the above-mentioned issue by developing a novel feature extraction algorithm and a novel classification algorithm for the detection of erroneous actions made by either human or BCI. The research approach evaluated the state of the art error detection classifier using data from two different age groups, young and elderly. The performance showed a statistical difference between the aforementioned age groups; therefore, there needs to be an improvement in error detection and classification. The results showed that my proposed relative peak feature (RPF) and adaptive decision surface (ADS) classifier outperformed the state of the art algorithms in detecting errors using EEG for both elderly and young groups. In addition, the novel classification algorithm has been applied to motor imagery to improve the detection of when a person imagines moving a limb. Finally, this thesis takes a brief look at object recognition for a shared control task of identifying utensils in cooperation with a prosthetic robotic hand

    Multifractal techniques for analysis and classification of emphysema images

    Get PDF
    This thesis proposes, develops and evaluates different multifractal methods for detection, segmentation and classification of medical images. This is achieved by studying the structures of the image and extracting the statistical self-similarity measures characterized by the Holder exponent, and using them to develop texture features for segmentation and classification. The theoretical framework for fulfilling these goals is based on the efficient computation of fractal dimension, which has been explored and extended in this work. This thesis investigates different ways of computing the fractal dimension of digital images and validates the accuracy of each method with fractal images with predefined fractal dimension. The box counting and the Higuchi methods are used for the estimation of fractal dimensions. A prototype system of the Higuchi fractal dimension of the computed tomography (CT) image is used to identify and detect some of the regions of the image with the presence of emphysema. The box counting method is also used for the development of the multifractal spectrum and applied to detect and identify the emphysema patterns. We propose a multifractal based approach for the classification of emphysema patterns by calculating the local singularity coefficients of an image using four multifractal intensity measures. One of the primary statistical measures of self-similarity used in the processing of tissue images is the Holder exponent (α-value) that represents the power law, which the intensity distribution satisfies in the local pixel neighbourhoods. The fractal dimension corresponding to each α-value gives a multifractal spectrum f(α) that was used as a feature descriptor for classification. A feature selection technique is introduced and implemented to extract some of the important features that could increase the discriminating capability of the descriptors and generate the maximum classification accuracy of the emphysema patterns. We propose to further improve the classification accuracy of emphysema CT patterns by combining the features extracted from the alpha-histograms and the multifractal descriptors to generate a new descriptor. The performances of the classifiers are measured by using the error matrix and the area under the receiver operating characteristic curve (AUC). The results at this stage demonstrated the proposed cascaded approach significantly improves the classification accuracy. Another multifractal based approach using a direct determination approach is investigated to demonstrate how multifractal characteristic parameters could be used for the identification of emphysema patterns in HRCT images. This further analysis reveals the multi-scale structures and characteristic properties of the emphysema images through the generalized dimensions. The results obtained confirm that this approach can also be effectively used for detecting and identifying emphysema patterns in CT images. Two new descriptors are proposed for accurate classification of emphysema patterns by hybrid concatenation of the local features extracted from the local binary patterns (LBP) and the global features obtained from the multifractal images. The proposed combined feature descriptors of the LBP and f(α) produced a very good performance with an overall classification accuracy of 98%. These performances outperform other state-of-the-art methods for emphysema pattern classification and demonstrate the discriminating power and robustness of the combined features for accurate classification of emphysema CT images. Overall, experimental results have shown that the multifractal could be effectively used for the classifications and detections of emphysema patterns in HRCT images

    The Wits intelligent teaching system (WITS): a smart lecture theatre to assess audience engagement

    Get PDF
    A Thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy, 2017The utility of lectures is directly related to the engagement of the students therein. To ensure the value of lectures, one needs to be certain that they are engaging to students. In small classes experienced lecturers develop an intuition of how engaged the class is as a whole and can then react appropriately to remedy the situation through various strategies such as breaks or changes in style, pace and content. As both the number of students and size of the venue grow, this type of contingent teaching becomes increasingly difficult and less precise. Furthermore, relying on intuition alone gives no way to recall and analyse previous classes or to objectively investigate trends over time. To address these problems this thesis presents the WITS INTELLIGENT TEACHING SYSTEM (WITS) to highlight disengaged students during class. A web-based, mobile application called Engage was developed to try elicit anonymous engagement information directly from students. The majority of students were unwilling or unable to self-report their engagement levels during class. This stems from a number of cultural and practical issues related to social display rules, unreliable internet connections, data costs, and distractions. This result highlights the need for a non-intrusive system that does not require the active participation of students. A nonintrusive, computer vision and machine learning based approach is therefore proposed. To support the development thereof, a labelled video dataset of students was built by recording a number of first year lectures. Students were labelled across a number of affects – including boredom, frustration, confusion, and fatigue – but poor inter-rater reliability meant that these labels could not be used as ground truth. Based on manual coding methods identified in the literature, a number of actions, gestures, and postures were identified as proxies of behavioural engagement. These proxies are then used in an observational checklist to mark students as engaged or not. A Support Vector Machine (SVM) was trained on Histograms of Oriented Gradients (HOG) to classify the students based on the identified behaviours. The results suggest a high temporal correlation of a single subject’s video frames. This leads to extremely high accuracies on seen subjects. However, this approach generalised poorly to unseen subjects and more careful feature engineering is required. The use of Convolutional Neural Networks (CNNs) improved the classification accuracy substantially, both over a single subject and when generalising to unseen subjects. While more computationally expensive than the SVM, the CNN approach lends itself to parallelism using Graphics Processing Units (GPUs). With GPU hardware acceleration, the system is able to run in near real-time and with further optimisations a real-time classifier is feasible. The classifier provides engagement values, which can be displayed to the lecturer live during class. This information is displayed as an Interest Map which highlights spatial areas of disengagement. The lecturer can then make informed decisions about how to progress with the class, what teaching styles to employ, and on which students to focus. An Interest Map was presented to lecturers and professors at the University of the Witwatersrand yielding 131 responses. The vast majority of respondents indicated that they would like to receive live engagement feedback during class, that they found the Interest Map an intuitive visualisation tool, and that they would be interested in using such technology. Contributions of this thesis include the development of a labelled video dataset; the development of a web based system to allow students to self-report engagement; the development of cross-platform, open-source software for spatial, action and affect labelling; the application of Histogram of Oriented Gradient based Support Vector Machines, and Deep Convolutional Neural Networks to classify this data; the development of an Interest Map to intuitively display engagement information to presenters; and finally an analysis of acceptance of such a system by educators.XL201

    Banknote Authentication and Medical Image Diagnosis Using Feature Descriptors and Deep Learning Methods

    Get PDF
    Banknote recognition and medical image analysis have been the foci of image processing and pattern recognition research. As counterfeiters have taken advantage of the innovation in print media technologies for reproducing fake monies, hence the need to design systems which can reassure and protect citizens of the authenticity of banknotes in circulation. Similarly, many physicians must interpret medical images. But image analysis by humans is susceptible to error due to wide variations across interpreters, lethargy, and human subjectivity. Computer-aided diagnosis is vital to improvements in medical analysis, as they facilitate the identification of findings that need treatment and assist the expert’s workflow. Thus, this thesis is organized around three such problems related to Banknote Authentication and Medical Image Diagnosis. In our first research problem, we proposed a new banknote recognition approach that classifies the principal components of extracted HOG features. We further experimented on computing HOG descriptors from cells created from image patch vertices of SURF points and designed a feature reduction approach based on a high correlation and low variance filter. In our second research problem, we developed a mobile app for banknote identification and counterfeit detection using the Unity 3D software and evaluated its performance based on a Cascaded Ensemble approach. The algorithm was then extended to a client-server architecture using SIFT and SURF features reduced by Bag of Words and high correlation-based HOG vectors. In our third research problem, experiments were conducted on a pre-trained mobile app for medical image diagnosis using three convolutional layers with an Ensemble Classifier comprising PCA and bagging of five base learners. Also, we implemented a Bidirectional Generative Adversarial Network to mitigate the effect of the Binary Cross Entropy loss based on a Deep Convolutional Generative Adversarial Network as the generator and encoder with Capsule Network as the discriminator while experimenting on images with random composition and translation inferences. Lastly, we proposed a variant of the Single Image Super-resolution for medical analysis by redesigning the Super Resolution Generative Adversarial Network to increase the Peak Signal to Noise Ratio during image reconstruction by incorporating a loss function based on the mean square error of pixel space and Super Resolution Convolutional Neural Network layers

    Kısmi ve tam yüz görüntüleri üzerinde makine öğrenmesi yöntemleriyle yüz ifadesi tespiti

    Get PDF
    06.03.2018 tarihli ve 30352 sayılı Resmi Gazetede yayımlanan “Yükseköğretim Kanunu İle Bazı Kanun Ve Kanun Hükmünde Kararnamelerde Değişiklik Yapılması Hakkında Kanun” ile 18.06.2018 tarihli “Lisansüstü Tezlerin Elektronik Ortamda Toplanması, Düzenlenmesi ve Erişime Açılmasına İlişkin Yönerge” gereğince tam metin erişime açılmıştır.Yüz ifadeleri insanlar arası iletişimin önemli bir parçası olduğu gibi insan makine etkileşiminde de önemli rol oynamaktadır. Suçlu tespiti, sürücü dikkatinin izlenmesi, hasta takibi gibi önemli konularda karar vermede yüz ifadesi tespiti kullanılmaktadır. Bu sebeple, yüz ifadelerinin sistemler aracılığı ile otomatik tespiti popüler bir makine öğrenmesi çalışma alanıdır. Bu tez çalışmasında yüz ifadesi sınıflandırma çalışmaları yapılmıştır. Yapılan yüz ifadesi tespiti uygulamaları genel olarak iki başlık altında toplanabilir. Bunlardan ilki kısmi yüz görüntülerinin klasik makine öğrenmesi yöntemleriyle analizi ve ikincisi ise tüm yüz görüntülerinin derin öğrenme yöntemleri ile analiz edilmesidir. Geliştirilen ilk uygulamada, yüz görüntülerinden duygu tespiti için literatürdeki çalışmalardan farklı olarak sadece göz ve kaşların bulunduğu bölgeler kullanılarak sınıflandırma yapılmış ve yüksek başarım elde edilmiştir. Önerilen bu yöntem sayesinde yüz ifadesi tespitleri alt yüz kapanmalarından veya ağız hareketlerinden etkilenmeyecek, gürbüz özniteliklerin seçimi ile daha az öznitelikle sınırlı kaynaklara sahip cihazlarda çalışabilecek niteliktedir. Ayrıca önerilen sistemin genelleme yeteneğinin yüksek olduğu karşılaştırmalı olarak deneysel çalışmalarla ortaya konulmuştur. Tez kapsamında yapılan diğer yüz ifadesi sınıflandırma çalışmaları tüm yüz görüntüleri kullanılarak derin öğrenme yöntemleri ile gerçeklenmiştir. Önerilen yaklaşımlardan birisi yüz bölütleme çalışmasıdır. Bu çalışmalar ile elde edilen bölütlenmiş görüntüde yüz ifadesi ile ilgili öznitelikler korunmakta, kişisel herhangi bir veri saklanmamakta ve böylece kişisel gizlilik de korunmuş olmaktadır. Ayrıca bölütlenmiş görüntü ile orijinal yüz görüntüsünün birleşimi; yüz ifadesi için önemli olan kaş, göz ve ağız bölgelerine odaklanılarak yüz ifadelerinin tanınma başarımının arttırılması sağlamıştır.Facial expressions are important for interpersonal communication also play an important role in human machine interaction. Facial expressions are used in many areas such as criminal detection, driver attention monitoring, patient monitoring. Therefore, automatic facial expression recognition systems are a popular machine learning problem. In this thesis study, facial expression recognition studies are performed. In general, the applications of facial expression recognition can be grouped under two topic in this thesis: analysis of partial facial images with classical machine learning methods and analysis of whole facial images with deep learning methods. In the first application, classification of the facial expressions from facial images was performed using only eye and eyebrows regions. This approach is different from the studies which are studied facial expression recognition in the literature and high success rate was achieved. With this approach, proposed system is more robust for under facial occlusions and mouth motion during speech. Further, according to our experiments, the generalization ability of the proposed system is high. In this thesis, the rest of the facial expression recognition applications was developed with whole face images using deep learning techniques. One of the proposed methods is segmentation of facial parts with CNN. After segmentation process, facial segmented images were obtained. With this segmented images, personal privacy is protected because the segmented images don't include any personal information. Also, the success rate of the classification was increased with combining original raw image and segmented image. Because; eyes, eyebrows and mouth are crucial for facial expression recognition and segmented images have these areas. Therefore, the proposed CNN architecture for classification forces the earlier layers of the CNN system to learn to detect and localize the facial regions, thus providing decoupled and guided training
    corecore