2,910 research outputs found

    Applications of aerospace technology in the public sector

    Get PDF
    Current activities of the program to accelerate specific applications of space related technology in major public sector problem areas are summarized for the period 1 June 1971 through 30 November 1971. An overview of NASA technology, technology applications, and supporting activities are presented. Specific technology applications in biomedicine are reported including cancer detection, treatment and research; cardiovascular diseases, diagnosis, and treatment; medical instrumentation; kidney function disorders, treatment, and research; and rehabilitation medicine

    Technology applications

    Get PDF
    A summary of NASA Technology Utilization programs for the period of 1 December 1971 through 31 May 1972 is presented. An abbreviated description of the overall Technology Utilization Applications Program is provided as a background for the specific applications examples. Subjects discussed are in the broad headings of: (1) cancer, (2) cardiovascular disease, (2) medical instrumentation, (4) urinary system disorders, (5) rehabilitation medicine, (6) air and water pollution, (7) housing and urban construction, (8) fire safety, (9) law enforcement and criminalistics, (10) transportation, and (11) mine safety

    A Framework for a Low Power on Body Real-Time Sensor System using UHF RFID

    Get PDF
    This paper details the use of an acceleration measuring system which can transmit in real-time sensor data through UHF RFID to a computer. Existing methods of real-time transmission of sensor data rely on power-intensive Bluetooth or Wi-Fi technologies which result in devices that require large bulky batteries, this causes the overall device size to be high and thus can potentially cause issue during use. By harnessing status flags within a specific UHF RFID chip and custom reader software conforming to the EPC GEN2 standard, continuous streaming data rates of 5.2KBps were achievable. These enhanced data rates were shown to be reliable up to a range of 2.4M with above 99.99% data integrity. The power consumption of this methodology was found to be below 2mW during full power continuous transmission. In summary this paper outlines and lays the foundation for the use of UHF RFID to deliver sub-2mW low latency, high reliability streaming methods within the domain of on body transmission

    A Learning Health Sciences Approach to Understanding Clinical Documentation in Pediatric Rehabilitation Settings

    Full text link
    The work presented in this dissertation provides an analysis of clinical documentation that challenges the concepts and thinking surrounding missingness of data from clinical settings and the factors that influence why data are missing. It also foregrounds the critical role of clinical documentation as infrastructure for creating learning health systems (LHS) for pediatric rehabilitation settings. Although completeness of discrete data is limited, the results presented do not reflect the quality of care or the extent of unstructured data that providers document in other locations of the electronic health record (EHR) interface. While some may view imputation and natural language processing as means to address missingness of clinical data, these practices carry biases in their interpretations and issues of validity in results. The factors that influence missingness of discrete clinical data are rooted not just in technical structures, but larger professional, system level and unobservable phenomena that shape provider practices of clinical documentation. This work has implications for how we view clinical documentation as critical infrastructure for LHS, future studies of data quality and health outcomes research, and EHR design and implementation. The overall research questions for this dissertation are: 1) To what extent can data networks be leveraged to build classifiers of patient functional performance and physical disability? 2) How can discrete clinical data on gross motor function be used to draw conclusions about clinical documentation practices in the EHR for cerebral palsy? 3) Why does missingness of discrete data in the EHR occur? To address these questions, a three-pronged approach is used to examine data completeness and the factors that influence missingness of discrete clinical data in an exemplar pediatric data learning network will be used. As a use-case, evaluation of EHR data completeness of gross motor function related data, populated by providers from 2015-2019 for children with cerebral palsy (CP), will be completed. Mixed methods research strategies will be used to achieve the dissertation objectives, including developing an expert-informed and standards-based phenotype model of gross motor function data as a task-based mechanism, conducting quantitative descriptive analyses of completeness of discrete data in the EHR, and performing qualitative thematic analyses to elicit and interpret the latent concepts that contribute to missingness of discrete data in the EHR. The clinical data for this dissertation are sourced from the Shriners Hospitals for Children (SHC) Health Outcomes Network (SHOnet), while qualitative data were collected through interviews and field observations of clinical providers across three care sites in the SHC system.PHDHlth Infrastr & Lrng Systs PhDUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162994/1/njkoscie_1.pd

    Development of an EMG-based Muscle Health Model for Elbow Trauma Patients

    Get PDF
    Musculoskeletal (MSK) conditions are a leading cause of pain and disability worldwide. Rehabilitation is critical for recovery from these conditions and for the prevention of long-term disability. Robot-assisted therapy has been demonstrated to provide improvements to stroke rehabilitation in terms of efficiency and patient adherence. However, there are no wearable robot-assisted solutions for patients with MSK injuries. One of the limiting factors is the lack of appropriate models that allow the use of biosignals as an interface input. Furthermore, there are no models to discern the health of MSK patients as they progress through their therapy. This thesis describes the design, data collection, analysis, and validation of a novel muscle health model for elbow trauma patients. Surface electromyography (sEMG) data sets were collected from the injured arms of elbow trauma patients performing 10 upper-limb motions. The data were assessed and compared to sEMG data collected from the patients\u27 contralateral healthy limbs. A statistical analysis was conducted to identify trends relating the sEMG signals to muscle health. sEMG-based classification models for muscle health were developed. Relevant sEMG features were identified and combined into feature sets for the classification models. The classifiers were used to distinguish between two levels of health: healthy and injured (50% baseline accuracy rate). Classification models based on individual motions achieved cross-validation accuracies of 48.2--79.6%. Following feature selection and optimization of the models, cross-validation accuracies of up to 82.1% were achieved. This work suggests that there is a potential for implementing an EMG-based model of muscle health in a rehabilitative elbow brace to assess patients recovering from MSK elbow trauma. However, more research is necessary to improve the accuracy and the specificity of the classification models

    The potential of additive manufacturing in the smart factory industrial 4.0: A review

    Get PDF
    Additive manufacturing (AM) or three-dimensional (3D) printing has introduced a novel production method in design, manufacturing, and distribution to end-users. This technology has provided great freedom in design for creating complex components, highly customizable products, and efficient waste minimization. The last industrial revolution, namely industry 4.0, employs the integration of smart manufacturing systems and developed information technologies. Accordingly, AM plays a principal role in industry 4.0 thanks to numerous benefits, such as time and material saving, rapid prototyping, high efficiency, and decentralized production methods. This review paper is to organize a comprehensive study on AM technology and present the latest achievements and industrial applications. Besides that, this paper investigates the sustainability dimensions of the AM process and the added values in economic, social, and environment sections. Finally, the paper concludes by pointing out the future trend of AM in technology, applications, and materials aspects that have the potential to come up with new ideas for the future of AM explorations

    Historically Embedded: Embodied Energy's Place in Building Retrofits

    Get PDF
    Older buildings, buildings over 50 years in age, comprise more than half of the existing buildings in the United States. The importance of reusing buildings and reinvesting in older buildings is the subject of this paper, as well as the rationale for retrofitting the existing building stock. Retention and reuse of these buildings preserves the materials, embodied energy, and human capital already expended in their construction. The recycling of buildings is a beneficial “green” practice, and stresses the importance and values of historic preservation in the overall promotion of heritage and sustainability. My Doctorate of Architecture project will explore many facets of renewal due to Hawaiʻi’s isolation from the rest of the world. An analytical intervention will be applied to Gartley Hall on the University of Hawaiʻi at Mānoa campus’ quad area. The Gartley model will examine and quantify the embodied energy at various phases of building retrofits. Society has become increasingly aware of our impact on the natural environment. This awareness is due in part to the rising cost of oil and the basic cost of living. Being cognizant of our impact on the environment will help mediate economic inflation and preserve Hawaiʻi’s beauty for future generations. Hawaiʻi was one of the last places on earth settled by man due to its complete isolation in the Pacific Ocean. This isolation has created one of the world’s most unique environments and lifestyles; minimizing each person’s carbon footprint will help preserve our islands’ natural beauty. My project demonstrates the implications and methods of choices a designer, developer, contractor, and building-user make to achieve sustainability in retrofitting existing buildings through an analysis that covers the embodied energy of existing buildings and their potential future uses. This project will analyze and compare the energy and materials previously expended on a building and at various levels of remodel. My conclusions are drawn from precedents, quantitative embodied energy data, and regional transportation variables (Hawaiʻi’s isolation). The final portion of the project identifies the problems and metrics associated with one of the oldest buildings on the University of Hawaiʻi at Mānoa campus through a lifespan model that considers phasing retrofits, transportation costs, and existing embodied energy
    • 

    corecore