31,771 research outputs found

    A Sinusoidal Current Driver With an Extended Frequency Range and Multifrequency Operation for Bioimpedance Applications

    Get PDF
    This paper describes an alternative sinusoidal current driver suitable for bioimpedance applications where high frequency operation is required. The circuit is based on a transconductor and provides current outputs with low phase error for frequencies around its pole frequency. This extends the upper frequency operational limit of the current driver. Multifrequency currents can be generated where each individual frequency is phase corrected. Analysis of the circuit is presented together with simulation and experimental results which demonstrate the proof of concept for both single and dual frequency current drivers. Measurements on a discrete test version of the circuit demonstrate a phase reduction from 25 ^{\circ} to 4 ^{\circ} at 3 MHz for 2 mAp-p output current. The output impedance of the current driver is essentially constant at about 1.1 M \Omega over a frequency range of 100 kHz to 5 MHz due to the introduction of the phase compensation. The compensation provides a bandwidth increase of a factor of about six for a residual phase delay of 4 ^{\circ

    An investigation of planar array system artefacts generated within an electrical impedance mammography system developed for breast cancer detection

    Get PDF
    An Electrical Impedance Mammography (EIM) planar array imaging system is being developed at the University of Sussex for the detection of breast cancers. Investigations have shown that during data collection, systematic errors and patient artefacts are frequently introduced during signal acquisition from different electrodes pairs. This is caused, in particular, by the large variations in the electrode-skin contact interface conditions occurring between separate electrode positions both with the same and different patients. As a result, the EIM image quality is seriously affected by these errors. Hence, this research aims to experimentally identify, analyse and propose effective methods to reduce the systematic errors at the electrode-skin interface. Experimental studies and subsequent analysis is presented to determine what ratio of electrode blockage seriously affects the acquired raw data which may in turn compromise the reconstruction. This leads to techniques for the fast and accurate detection of any such occurrences. These methodologies can be applied to any planar array based EIM system

    EIT Reconstruction Algorithms: Pitfalls, Challenges and Recent Developments

    Full text link
    We review developments, issues and challenges in Electrical Impedance Tomography (EIT), for the 4th Workshop on Biomedical Applications of EIT, Manchester 2003. We focus on the necessity for three dimensional data collection and reconstruction, efficient solution of the forward problem and present and future reconstruction algorithms. We also suggest common pitfalls or ``inverse crimes'' to avoid.Comment: A review paper for the 4th Workshop on Biomedical Applications of EIT, Manchester, UK, 200

    Flexible Neural Electrode Array Based-on Porous Graphene for Cortical Microstimulation and Sensing.

    Get PDF
    Neural sensing and stimulation have been the backbone of neuroscience research, brain-machine interfaces and clinical neuromodulation therapies for decades. To-date, most of the neural stimulation systems have relied on sharp metal microelectrodes with poor electrochemical properties that induce extensive damage to the tissue and significantly degrade the long-term stability of implantable systems. Here, we demonstrate a flexible cortical microelectrode array based on porous graphene, which is capable of efficient electrophysiological sensing and stimulation from the brain surface, without penetrating into the tissue. Porous graphene electrodes show superior impedance and charge injection characteristics making them ideal for high efficiency cortical sensing and stimulation. They exhibit no physical delamination or degradation even after 1 million biphasic stimulation cycles, confirming high endurance. In in vivo experiments with rodents, same array is used to sense brain activity patterns with high spatio-temporal resolution and to control leg muscles with high-precision electrical stimulation from the cortical surface. Flexible porous graphene array offers a minimally invasive but high efficiency neuromodulation scheme with potential applications in cortical mapping, brain-computer interfaces, treatment of neurological disorders, where high resolution and simultaneous recording and stimulation of neural activity are crucial

    Transmural versus non-transmural in situ electrical impedance spectrum for healthy, ischemic, and healed myocardium

    Get PDF
    Electrical properties of myocardial tissue are anisotropic due to the complex structure of the myocardial fiber orientation and the distribution of gap junctions. For this reason, measured myocardial impedance may differ depending on the current distribution and direction with respect to myocardial fiber orientation and, consequently, according to the measurement method. The objective of this study is to compare the specific impedance spectra of the myocardium measured using two different methods. One method consisted of transmural measurements using an intracavitary catheter and the other method consisted of nontransmural measurements using a four-needle probe inserted into the epicardium. Using both methods, we provide the in situ specific impedance spectrum (magnitude and phase angle) of normal, ischemic, and infarcted pig myocardium tissue from 1 kHz to 1 MHz. Magnitude spectra showed no significant differences between the measurement techniques. However, the phase angle spectra showed significant differences for normal and ischemic tissues according to the measurement technique. The main difference is encountered after 60 min of acute ischemia in the phase angle spectrum. Healed myocardial tissue showed a small and flat phase angle spectrum in both methods due to the low content of cells in the transmural infarct scar. In conclusion, both transmural and nontransmural measurements of phase angle spectrum allow the differentiation among normal, ischemic, and infarcted tissue.Peer Reviewe

    Reproducibility and repeatability of measuring the electrical impedance of the pregnant human cervix-the effect of probe size and applied pressure

    Get PDF
    Background: The utility of cervical electrical impedance spectroscopy (EIS) as a diagnostic tool is being investigated in clinical trials. We sought to assess the reliability of two different sizes of tetrapolar probes used in measuring cervical impedance. Methods: Cervical transfer impedance was measured at 14 frequencies between 76 and 625 000 Hz from 11 pregnant subjects at term. Repeated measurements were taken with two probes (3 mm and 12 mm diameter) applied softly (approximately 0.7 Newton of force), and firmly (approximately 2.2 Newton) to the surface of the cervix by two observers. The intra-class correlation coefficient (ICC), coefficient of variation (CV) and repeatability standard deviations (SD) were derived from these measurements and compared. Results: Measurements taken by one observer were highly repeatable for both probes as demonstrated by high ICC and low CV values. Probe performance was improved further by firm application. Firm application of the 3 mm probe resulted in ICC values that ranged from 0.936 to 0.986 (p = 0.0001) and CV values between 1.0 and 3.4%. Firm pressure with the 12 mm probe resulted in ICC values that ranged between 0.914 and 0.988 (p = 0.0001) with CV values between 0.7 and 2.1%. In addition, the repeatability SD was low across all frequencies implying that there was low intra-observer variability. Measurements taken by 2 observers with firm application of the 12 mm probe demonstrated moderate reproducibility between 9.8 and 156 kHz, the frequency range in which previous clinical studies have shown predictive association between high cervical resistivity and vaginal delivery: ICC values ranged between 0.528 and 0.638 (p < 0.05), CV values were between 3.3 and 5.2% and reproducibility SD values were also low. In contrast the 3 mm probe demonstrated poor reproducibility at all study frequencies. Conclusion: Measuring cervical resistivity by a single observer with both the 3 and 12 mm probes is highly repeatable whilst inter-observer reproducibility is poor with the 3 mm probe but moderately good when the 12 mm probe is firmly applied to the cervix in the frequency range 9.8 to 156 kHz, consistent with our observations of probe performance in clinical trials
    corecore