23,078 research outputs found

    Analysis of the fluctuations of the tumour/host interface

    Get PDF
    In a recent analysis of metabolic scaling in solid tumours we found a scaling law that interpolates between the power laws μ∝V and μ∝V2∕3, where μ is the metabolic rate expressed as the glucose absorption rate and V is the tumour volume. The scaling law fits quite well both in vitro and in vivo data, however we also observed marked fluctuations that are associated with the specific biological properties of individual tumours. Here we analyse these fluctuations, in an attempt to find the population-wide distribution of an important parameter (A) which expresses the total extent of the interface between the solid tumour and the non-cancerous environment. Heuristic considerations suggest that the values of the A parameter follow a lognormal distribution, and, allowing for the large uncertainties of the experimental data, our statistical analysis confirms this

    Introducing monitoring and automation in cartilage tissue engineering, toward controlled clinical translation

    Get PDF
    The clinical application of tissue engineered products requires to be tightly connected with the possibility to control the process, assess graft quality and define suitable release criteria for implantation. The aim of this work is to establish techniques to standardize and control the in vitro engineering of cartilage grafts. The work is organized in three sub-projects: first a method to predict cell proliferation capacity was studied, then an in line technique to monitor the draft during in vitro culture was developed and, finally, a culture system for the reproducible production of engineered cartilage was designed and validated. Real-time measurements of human chondrocyte heat production during in vitro proliferation. Isothermal microcalorimetry (IMC) is an on-line, non-destructive and high resolution technique. In this project we aimed to verify the possibility to apply IMC to monitor the metabolic activity of primary human articular chondrocytes (HAC) during their in vitro proliferation. Indeed, currently, many clinically available cell therapy products for the repair of cartilage lesions involve a process of in vitro cell expansion. Establishing a model system able to predict the efficiency of this lengthy, labor-intensive, and challenging to standardize step could have a great potential impact on the manufacturing process. In this study an optimized experimental set up was first established, to reproducible acquire heat flow data; then it was demonstrated that the HAC proliferation within the IMC-based model was similar to proliferation under standard culture conditions, verifying its relevance for simulating the typical cell culture application. Finally, based on the results from 12 independent donors, the possible predictive potential of this technique was assessed. Online monitoring of oxygen as a non-destructive method to quantify cells in engineered 3D tissue constructs. This project aimed at assessing a technique to monitor graft quality during production and/or at release. A quantitative method to monitor the cells number in a 3D construct, based on the on-line measurement of the oxygen consumption in a perfusion based bioreactor system was developed. Oxygen levels dissolved in the medium were monitored on line, by two chemo-optic flow-through micro-oxygen sensors connected at the inlet and the outlet of the bioreactor scaffold chamber. A destructive DNA assay served to quantify the number of cells at the end of the culture. Thus the oxygen consumption per cell could be calculated as the oxygen drop across the perfused constructs at the end of the culture period and the number of cells quantified by DNA. The method developed would allow to non-invasively monitoring in real time the number of chondrocytes on the scaffold. Bioreactor based engineering of large-scale human cartilage grafts for joint resurfacing. The aim of this project was to upscale the size of engineered human cartilage grafts. The main aim of this project consisted in the design and prototyping of a direct perfusion bioreactor system, based on fluidodynamic models (realized in collaboration with the Institute for Bioengineering of Catalonia, Spain), able to guarantee homogeneous seeding and culture conditions trough the entire scaffold surface. The system was then validated and the capability to reproducibly support the process of tissue development was tested by histological, biochemical and biomechanical assays. Within the same project the automation of the designed scaled up bioreactor system, thought as a stand alone system, was proposed. A prototype was realized in collaboration with Applikon Biotechnology BV, The Netherlands. The developed system allows to achieve within a closed environment both cell seeding and culture, controlling some important environmental parameters (e.g. temperature, CO2 and O2 tension), coordinating the medium flow and tracking culture development. The system represents a relevant step toward process automation in tissue engineering and, as previously discussed, enhancing the automation level is an important requirement in order to move towards standardized protocols of graft generation for the clinical practice. These techniques will be critical towards a controlled and standardized procedure for clinical implementation of tissue engineering products and will provide the basis for controlled in vitro studies on cartilage development. Indeed the resulting methods have already been integrated in a streamlined, controlled, bioreactor based protocol for the in vitro production of up scaled engineered cartilage drafts. Moreover the techniques described will serve as the foundation for a recently approved Collaborative Project funded by the European Union, having the goal to produce cartilage tissue grafts. In order to reach this goal the research based technologies and processes described in this dissertation will be adapted for GMP compliance and conformance to regulatory guidelines for the production of engineered tissues for clinical use, which will be tested in a clinical trial

    Data-driven modelling of biological multi-scale processes

    Full text link
    Biological processes involve a variety of spatial and temporal scales. A holistic understanding of many biological processes therefore requires multi-scale models which capture the relevant properties on all these scales. In this manuscript we review mathematical modelling approaches used to describe the individual spatial scales and how they are integrated into holistic models. We discuss the relation between spatial and temporal scales and the implication of that on multi-scale modelling. Based upon this overview over state-of-the-art modelling approaches, we formulate key challenges in mathematical and computational modelling of biological multi-scale and multi-physics processes. In particular, we considered the availability of analysis tools for multi-scale models and model-based multi-scale data integration. We provide a compact review of methods for model-based data integration and model-based hypothesis testing. Furthermore, novel approaches and recent trends are discussed, including computation time reduction using reduced order and surrogate models, which contribute to the solution of inference problems. We conclude the manuscript by providing a few ideas for the development of tailored multi-scale inference methods.Comment: This manuscript will appear in the Journal of Coupled Systems and Multiscale Dynamics (American Scientific Publishers

    The role of Computer Aided Process Engineering in physiology and clinical medicine

    Get PDF
    This paper discusses the potential role for Computer Aided Process Engineering (CAPE) in developing engineering analysis and design approaches to biological systems across multiple levels—cell signalling networks, gene, protein and metabolic networks, cellular systems, through to physiological systems. The 21st Century challenge in the Life Sciences is to bring together widely dispersed models and knowledge in order to enable a system-wide understanding of these complex systems. This systems level understanding should have broad clinical benefits. Computer Aided Process Engineering can bring systems approaches to (i) improving understanding of these complex chemical and physical (particularly molecular transport in complex flow regimes) interactions at multiple scales in living systems, (ii) analysis of these models to help to identify critical missing information and to explore the consequences on major output variables resulting from disturbances to the system, and (iii) ‘design’ potential interventions in in vivo systems which can have significant beneficial, or potentially harmful, effects which need to be understood. This paper develops these three themes drawing on recent projects at UCL. The first project has modeled the effects of blood flow on endothelial cells lining arteries, taking into account cell shape change resulting in changes in the cell skeleton which cause consequent chemical changes. A second is a project which is building an in silico model of the human liver, tieing together models from the molecular level to the liver. The composite model models glucose regulation in the liver and associated organs. Both projects involve molecular transport, chemical reactions, and complex multiscale systems, tackled by approaches from CAPE. Chemical Engineers solve multiple scale problems in manufacturing processes – from molecular scale through unit operations scale to plant-wide and enterprise wide systems – so have an appropriate skill set for tackling problems in physiology and clinical medicine, in collaboration with life and clinical scientists

    Roadmap on semiconductor-cell biointerfaces.

    Get PDF
    This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world
    corecore