128,517 research outputs found

    Noninvasive assessment of inspiratory muscle neuromechanical coupling during inspiratory threshold loading

    Get PDF
    Diaphragm neuromechanical coupling (NMC), which reflects the efficiency of conversion of neural activation to transdiaphragmatic pressure (Pdi), is increasingly recognized to be a useful clinical index of diaphragm function and respiratory mechanics in neuromuscular weakness and cardiorespiratory disease. However, the current gold standard assessment of diaphragm NMC requires invasive measurements of Pdi and crural diaphragm electromyography (oesEMGdi), which complicates the measurement of diaphragm NMC in clinical practice. This is the first study to compare invasive measurements of diaphragm NMC (iNMC) using the relationship between Pdi and oesEMGdi, with noninvasive assessment of NMC (nNMC) using surface mechanomyography (sMMGlic) and electromyography (sEMGlic) of lower chest wall inspiratory muscles. Both invasive and noninvasive measurements were recorded in twelve healthy adult subjects during an inspiratory threshold loading protocol. A linear relationship between noninvasive sMMGlic and sEMGlic measurements was found, resulting in little change in nNMC with increasing inspiratory load. By contrast, a curvilinear relationship between invasive Pdi and oesEMGdi measurements was observed, such that there was a progressive increase in iNMC with increasing inspiratory threshold load. Progressive recruitment of lower ribcage muscles, serving to enhance the mechanical advantage of the diaphragm, may explain the more linear relationship between sMMGlic and sEMGlic (both representing lower intercostal plus costal diaphragm activity) than between Pdi and crural oesEMGdi. Noninvasive indices of NMC derived from sEMGlic and sMMGlic may prove to be useful indices of lower chest wall inspiratory muscle NMC, particularly in settings that do not have access to invasive measures of diaphragm function.Peer ReviewedPostprint (published version

    Model estimation of cerebral hemodynamics between blood flow and volume changes: a data-based modeling approach

    Get PDF
    It is well known that there is a dynamic relationship between cerebral blood flow (CBF) and cerebral blood volume (CBV). With increasing applications of functional MRI, where the blood oxygen-level-dependent signals are recorded, the understanding and accurate modeling of the hemodynamic relationship between CBF and CBV becomes increasingly important. This study presents an empirical and data-based modeling framework for model identification from CBF and CBV experimental data. It is shown that the relationship between the changes in CBF and CBV can be described using a parsimonious autoregressive with exogenous input model structure. It is observed that neither the ordinary least-squares (LS) method nor the classical total least-squares (TLS) method can produce accurate estimates from the original noisy CBF and CBV data. A regularized total least-squares (RTLS) method is thus introduced and extended to solve such an error-in-the-variables problem. Quantitative results show that the RTLS method works very well on the noisy CBF and CBV data. Finally, a combination of RTLS with a filtering method can lead to a parsimonious but very effective model that can characterize the relationship between the changes in CBF and CBV

    Aortic pulse wave velocity measurement via heart sounds and impedance plethysmography

    Full text link
    Full abstract in the manuscript

    Assessing the performance of ultrafast vector flow imaging in the neonatal heart via multiphysics modeling and In vitro experiments

    Get PDF
    Ultrafast vector flow imaging would benefit newborn patients with congenital heart disorders, but still requires thorough validation before translation to clinical practice. This paper investigates 2-D speckle tracking (ST) of intraventricular blood flow in neonates when transmitting diverging waves at ultrafast frame rate. Computational and in vitro studies enabled us to quantify the performance and identify artifacts related to the flow and the imaging sequence. First, synthetic ultrasound images of a neonate's left ventricular flow pattern were obtained with the ultrasound simulator Field II by propagating point scatterers according to 3-D intraventricular flow fields obtained with computational fluid dynamics (CFD). Noncompounded diverging waves (opening angle of 60 degrees) were transmitted at a pulse repetition frequency of 9 kHz. ST of the B-mode data provided 2-D flow estimates at 180 Hz, which were compared with the CFD flow field. We demonstrated that the diastolic inflow jet showed a strong bias in the lateral velocity estimates at the edges of the jet, as confirmed by additional in vitro tests on a jet flow phantom. Furthermore, ST performance was highly dependent on the cardiac phase with low flows (< 5 cm/s), high spatial flow gradients, and out-of-plane flow as deteriorating factors. Despite the observed artifacts, a good overall performance of 2-D ST was obtained with a median magnitude underestimation and angular deviation of, respectively, 28% and 13.5 degrees during systole and 16% and 10.5 degrees during diastole

    A Deep Learning Approach to Denoise Optical Coherence Tomography Images of the Optic Nerve Head

    Full text link
    Purpose: To develop a deep learning approach to de-noise optical coherence tomography (OCT) B-scans of the optic nerve head (ONH). Methods: Volume scans consisting of 97 horizontal B-scans were acquired through the center of the ONH using a commercial OCT device (Spectralis) for both eyes of 20 subjects. For each eye, single-frame (without signal averaging), and multi-frame (75x signal averaging) volume scans were obtained. A custom deep learning network was then designed and trained with 2,328 "clean B-scans" (multi-frame B-scans), and their corresponding "noisy B-scans" (clean B-scans + gaussian noise) to de-noise the single-frame B-scans. The performance of the de-noising algorithm was assessed qualitatively, and quantitatively on 1,552 B-scans using the signal to noise ratio (SNR), contrast to noise ratio (CNR), and mean structural similarity index metrics (MSSIM). Results: The proposed algorithm successfully denoised unseen single-frame OCT B-scans. The denoised B-scans were qualitatively similar to their corresponding multi-frame B-scans, with enhanced visibility of the ONH tissues. The mean SNR increased from 4.02±0.684.02 \pm 0.68 dB (single-frame) to 8.14±1.038.14 \pm 1.03 dB (denoised). For all the ONH tissues, the mean CNR increased from 3.50±0.563.50 \pm 0.56 (single-frame) to 7.63±1.817.63 \pm 1.81 (denoised). The MSSIM increased from 0.13±0.020.13 \pm 0.02 (single frame) to 0.65±0.030.65 \pm 0.03 (denoised) when compared with the corresponding multi-frame B-scans. Conclusions: Our deep learning algorithm can denoise a single-frame OCT B-scan of the ONH in under 20 ms, thus offering a framework to obtain superior quality OCT B-scans with reduced scanning times and minimal patient discomfort
    corecore