8,428 research outputs found

    Pressure Acquisition System for In Vitro Mitral Valve Analysis

    Get PDF
    In vitro testing of the mitral valve chordae tendineae is utilized to aid in the understanding of the stresses that occur in vivo and improve upon surgical solutions that exist for mitral valve repair. This project aimed to design the water control system for a left heart simulation chamber, as well as the pressure acquisition inside the chamber. A solenoid valve was utilized to control the water supply to the tank and was powered utilizing National Instruments software. National Instruments hardware and software was also used with the pressure transducer in order to obtain pressure readings from the chamber. The system was able to be fully controlled using LabVIEW and a pressure trend line was acquired. Future work will focus on developing a way to obtain more precise pressure measurements and automating the solenoid valve to shut off the water supply once physiological pressure has been met inside the chamber

    In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography

    Get PDF
    We present in vivo volumetric images of human retinal micro-circulation using Fourier-domain optical coherence tomography (Fd-OCT) with the phase-variance based motion contrast method. Currently fundus fluorescein angiography (FA) is the standard technique in clinical settings for visualizing blood circulation of the retina. High contrast imaging of retinal vasculature is achieved by injection of a fluorescein dye into the systemic circulation. We previously reported phase-variance optical coherence tomography (pvOCT) as an alternative and non-invasive technique to image human retinal capillaries. In contrast to FA, pvOCT allows not only noninvasive visualization of a two-dimensional retinal perfusion map but also volumetric morphology of retinal microvasculature with high sensitivity. In this paper we report high-speed acquisition at 125 kHz A-scans with pvOCT to reduce motion artifacts and increase the scanning area when compared with previous reports. Two scanning schemes with different sampling densities and scanning areas are evaluated to find optimal parameters for high acquisition speed in vivo imaging. In order to evaluate this technique, we compare pvOCT capillary imaging at 3x3 mm^2 and 1.5x1.5 mm^2 with fundus FA for a normal human subject. Additionally, a volumetric view of retinal capillaries and a stitched image acquired with ten 3x3 mm^2 pvOCT sub-volumes are presented. Visualization of retinal vasculature with pvOCT has potential for diagnosis of retinal vascular diseases

    A Web-Based Distributed Virtual Educational Laboratory

    Get PDF
    Evolution and cost of measurement equipment, continuous training, and distance learning make it difficult to provide a complete set of updated workbenches to every student. For a preliminary familiarization and experimentation with instrumentation and measurement procedures, the use of virtual equipment is often considered more than sufficient from the didactic point of view, while the hands-on approach with real instrumentation and measurement systems still remains necessary to complete and refine the student's practical expertise. Creation and distribution of workbenches in networked computer laboratories therefore becomes attractive and convenient. This paper describes specification and design of a geographically distributed system based on commercially standard components

    Development of interactive and remote learning instruments for engineering education

    Get PDF
    Many educators have argued for and against the use of remote aids in support of student learning. Some proponents argue that only remote laboratories should be used whereas others argue for the requirement for hands on experience with associated tactical, visual and auditory learning experiences. In this paper we present the methodology for developing a middle ground Virtual Instruments that can be used as a complement learning aid to the hands on laboratory and also if necessary, with added features, can be used as a remote version of the laboratory

    Master slave en-face OCT/SLO

    Get PDF
    Master Slave optical coherence tomography (MS-OCT) is an OCT method that does not require resampling of data and can be used to deliver en-face images from several depths simultaneously. As the MS-OCT method requires important computational resources, the number of multiple depth en-face images that can be produced in real-time is limited. Here, we demonstrate progress in taking advantage of the parallel processing feature of the MS-OCT technology. Harnessing the capabilities of graphics processing units (GPU)s, information from 384 depth positions is acquired in one raster with real time display of up to 40 en-face OCT images. These exhibit comparable resolution and sensitivity to the images produced using the conventional Fourier domain based method. The GPU facilitates versatile real time selection of parameters, such as the depth positions of the 40 images out of the set of 384 depth locations, as well as their axial resolution. In each updated displayed frame, in parallel with the 40 en-face OCT images, a scanning laser ophthalmoscopy (SLO) lookalike image is presented together with two B-scan OCT images oriented along rectangular directions. The thickness of the SLO lookalike image is dynamically determined by the choice of number of en-face OCT images displayed in the frame and the choice of differential axial distance between them

    Data Display, Acquisition and Feedback System for Biomedical Experiments

    Get PDF
    Biomedical signals have various research applications in prosthetic limb development and other control applications. Consequently, a workstation that can be used to conduct biomedical experiments using EMG and other similar signals can be beneficial to the continuation of research in this growing field. We have investigated the possibility of creating a PC-based workstation to conduct these experiments using National Instrument’s LabVIEW. Our work suggests that such a system can not be used with experiments that require hard real-time control

    Remote monitoring of biodynamic activity using electric potential sensors

    Get PDF
    Previous work in applying the electric potential sensor to the monitoring of body electrophysiological signals has shown that it is now possible to monitor these signals without needing to make any electrical contact with the body. Conventional electrophysiology makes use of electrodes which are placed in direct electrical contact with the skin. The electric potential sensor requires no cutaneous electrical contact, it operates by sensing the displacement current using a capacitive coupling. When high resolution body electrophysiology is required a strong (capacitive) coupling is used to maximise the collected signal. However, in remote applications where there is typically an air-gap between the body and the sensor only a weak coupling can be achieved. In this paper we demonstrate that the electric potential sensor can be successfully used for the remote sensing and monitoring of bioelectric activity. We show examples of heart-rate measurements taken from a seated subject using sensors mounted in the chair. We also show that it is possible to monitor body movements on the opposite side of a wall to the sensor. These sensing techniques have biomedical applications for non-contact monitoring of electrophysiological conditions and can be applied to passive through-the-wall surveillance systems for security applications

    Web-based sensor streaming wearable for respiratory monitoring applications.

    Get PDF
    This paper presents a system for remote monitoring of respiration of individuals that can detect respiration rate, mode of breathing and identify coughing events. It comprises a series of polymer fabric-sensors incorporated into a sports vest, a wearable data acquisition platform and a novel rich internet application (RIA) which together enable remote real-time monitoring of untethered wearable systems for respiratory rehabilitation. This system will, for the first time, allow therapists to monitor and guide the respiratory efforts of patients in real-time through a web browser. Changes in abdomen expansion and contraction associated with respiration are detected by the fabric sensors and transmitted wirelessly via a Bluetooth-based solution to a standard computer. The respiratory signals are visualized locally through the RIA and subsequently published to a sensor streaming cloud-based server. A web-based signal streaming protocol makes the signals available as real-time streams to authorized subscribers over standard browsers. We demonstrate real-time streaming of a six-sensor shirt rendered remotely at 40 samples/s per sensor with perceptually acceptable latency (<0.5s) over realistic network conditions

    Wavelet based processing of physiological signals for purposes of embedded computing

    Get PDF
    corecore