1,208 research outputs found

    A history and theory of textual event detection and recognition

    Get PDF

    Structured Named Entities

    Get PDF
    The names of people, locations, and organisations play a central role in language, and named entity recognition (NER) has been widely studied, and successfully incorporated, into natural language processing (NLP) applications. The most common variant of NER involves identifying and classifying proper noun mentions of these and miscellaneous entities as linear spans in text. Unfortunately, this version of NER is no closer to a detailed treatment of named entities than chunking is to a full syntactic analysis. NER, so construed, reflects neither the syntactic nor semantic structure of NE mentions, and provides insufficient categorical distinctions to represent that structure. Representing this nested structure, where a mention may contain mention(s) of other entities, is critical for applications such as coreference resolution. The lack of this structure creates spurious ambiguity in the linear approximation. Research in NER has been shaped by the size and detail of the available annotated corpora. The existing structured named entity corpora are either small, in specialist domains, or in languages other than English. This thesis presents our Nested Named Entity (NNE) corpus of named entities and numerical and temporal expressions, taken from the WSJ portion of the Penn Treebank (PTB, Marcus et al., 1993). We use the BBN Pronoun Coreference and Entity Type Corpus (Weischedel and Brunstein, 2005a) as our basis, manually annotating it with a principled, fine-grained, nested annotation scheme and detailed annotation guidelines. The corpus comprises over 279,000 entities over 49,211 sentences (1,173,000 words), including 118,495 top-level entities. Our annotations were designed using twelve high-level principles that guided the development of the annotation scheme and difficult decisions for annotators. We also monitored the semantic grammar that was being induced during annotation, seeking to identify and reinforce common patterns to maintain consistent, parsimonious annotations. The result is a scheme of 118 hierarchical fine-grained entity types and nesting rules, covering all capitalised mentions of entities, and numerical and temporal expressions. Unlike many corpora, we have developed detailed guidelines, including extensive discussion of the edge cases, in an ongoing dialogue with our annotators which is critical for consistency and reproducibility. We annotated independently from the PTB bracketing, allowing annotators to choose spans which were inconsistent with the PTB conventions and errors, and only refer back to it to resolve genuine ambiguity consistently. We merged our NNE with the PTB, requiring some systematic and one-off changes to both annotations. This allows the NNE corpus to complement other PTB resources, such as PropBank, and inform PTB-derived corpora for other formalisms, such as CCG and HPSG. We compare this corpus against BBN. We consider several approaches to integrating the PTB and NNE annotations, which affect the sparsity of grammar rules and visibility of syntactic and NE structure. We explore their impact on parsing the NNE and merged variants using the Berkeley parser (Petrov et al., 2006), which performs surprisingly well without specialised NER features. We experiment with flattening the NNE annotations into linear NER variants with stacked categories, and explore the ability of a maximum entropy and a CRF NER system to reproduce them. The CRF performs substantially better, but is infeasible to train on the enormous stacked category sets. The flattened output of the Berkeley parser are almost competitive with the CRF. Our results demonstrate that the NNE corpus is feasible for statistical models to reproduce. We invite researchers to explore new, richer models of (joint) parsing and NER on this complex and challenging task. Our nested named entity corpus will improve a wide range of NLP tasks, such as coreference resolution and question answering, allowing automated systems to understand and exploit the true structure of named entities

    Mining the Medical and Patent Literature to Support Healthcare and Pharmacovigilance

    Get PDF
    Recent advancements in healthcare practices and the increasing use of information technology in the medical domain has lead to the rapid generation of free-text data in forms of scientific articles, e-health records, patents, and document inventories. This has urged the development of sophisticated information retrieval and information extraction technologies. A fundamental requirement for the automatic processing of biomedical text is the identification of information carrying units such as the concepts or named entities. In this context, this work focuses on the identification of medical disorders (such as diseases and adverse effects) which denote an important category of concepts in the medical text. Two methodologies were investigated in this regard and they are dictionary-based and machine learning-based approaches. Futhermore, the capabilities of the concept recognition techniques were systematically exploited to build a semantic search platform for the retrieval of e-health records and patents. The system facilitates conventional text search as well as semantic and ontological searches. Performance of the adapted retrieval platform for e-health records and patents was evaluated within open assessment challenges (i.e. TRECMED and TRECCHEM respectively) wherein the system was best rated in comparison to several other competing information retrieval platforms. Finally, from the medico-pharma perspective, a strategy for the identification of adverse drug events from medical case reports was developed. Qualitative evaluation as well as an expert validation of the developed system's performance showed robust results. In conclusion, this thesis presents approaches for efficient information retrieval and information extraction from various biomedical literature sources in the support of healthcare and pharmacovigilance. The applied strategies have potential to enhance the literature-searches performed by biomedical, healthcare, and patent professionals. The applied strategies have potential to enhance the literature-searches performed by biomedical, healthcare, and patent professionals. This can promote the literature-based knowledge discovery, improve the safety and effectiveness of medical practices, and drive the research and development in medical and healthcare arena

    Game Theory and Prescriptive Analytics for Naval Wargaming Battle Management Aids

    Get PDF
    NPS NRP Technical ReportThe Navy is taking advantage of advances in computational technologies and data analytic methods to automate and enhance tactical decisions and support warfighters in highly complex combat environments. Novel automated techniques offer opportunities to support the tactical warfighter through enhanced situational awareness, automated reasoning and problem-solving, and faster decision timelines. This study will investigate how game theory and prescriptive analytics methods can be used to develop real-time wargaming capabilities to support warfighters in their ability to explore and evaluate the possible consequences of different tactical COAs to improve tactical missions. This study will develop a conceptual design of a real-time tactical wargaming capability. This study will explore data analytic methods including game theory, prescriptive analytics, and artificial intelligence (AI) to evaluate their potential to support real-time wargaming.N2/N6 - Information WarfareThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.

    Information Extraction from Text for Improving Research on Small Molecules and Histone Modifications

    Get PDF
    The cumulative number of publications, in particular in the life sciences, requires efficient methods for the automated extraction of information and semantic information retrieval. The recognition and identification of information-carrying units in text – concept denominations and named entities – relevant to a certain domain is a fundamental step. The focus of this thesis lies on the recognition of chemical entities and the new biological named entity type histone modifications, which are both important in the field of drug discovery. As the emergence of new research fields as well as the discovery and generation of novel entities goes along with the coinage of new terms, the perpetual adaptation of respective named entity recognition approaches to new domains is an important step for information extraction. Two methodologies have been investigated in this concern: the state-of-the-art machine learning method, Conditional Random Fields (CRF), and an approximate string search method based on dictionaries. Recognition methods that rely on dictionaries are strongly dependent on the availability of entity terminology collections as well as on its quality. In the case of chemical entities the terminology is distributed over more than 7 publicly available data sources. The join of entries and accompanied terminology from selected resources enables the generation of a new dictionary comprising chemical named entities. Combined with the automatic processing of respective terminology – the dictionary curation – the recognition performance reached an F1 measure of 0.54. That is an improvement by 29 % in comparison to the raw dictionary. The highest recall was achieved for the class of TRIVIAL-names with 0.79. The recognition and identification of chemical named entities provides a prerequisite for the extraction of related pharmacological relevant information from literature data. Therefore, lexico-syntactic patterns were defined that support the automated extraction of hypernymic phrases comprising pharmacological function terminology related to chemical compounds. It was shown that 29-50 % of the automatically extracted terms can be proposed for novel functional annotation of chemical entities provided by the reference database DrugBank. Furthermore, they are a basis for building up concept hierarchies and ontologies or for extending existing ones. Successively, the pharmacological function and biological activity concepts obtained from text were included into a novel descriptor for chemical compounds. Its successful application for the prediction of pharmacological function of molecules and the extension of chemical classification schemes, such as the the Anatomical Therapeutic Chemical (ATC), is demonstrated. In contrast to chemical entities, no comprehensive terminology resource has been available for histone modifications. Thus, histone modification concept terminology was primary recognized in text via CRFs with a F1 measure of 0.86. Subsequent, linguistic variants of extracted histone modification terms were mapped to standard representations that were organized into a newly assembled histone modification hierarchy. The mapping was accomplished by a novel developed term mapping approach described in the thesis. The combination of term recognition and term variant resolution builds up a new procedure for the assembly of novel terminology collections. It supports the generation of a term list that is applicable in dictionary-based methods. For the recognition of histone modification in text it could be shown that the named entity recognition method based on dictionaries is superior to the used machine learning approach. In conclusion, the present thesis provides techniques which enable an enhanced utilization of textual data, hence, supporting research in epigenomics and drug discovery

    Harnessing Openness to Transform American Health Care

    Get PDF
    The Digital Connections Council (DCC) of the Committee for Economic Development (CED) has been developing the concept of openness in a series of reports. It has analyzed information and processes to determine their openness based on qualities of "accessibility" and "responsiveness." If information is not available or available only under restrictive conditions it is less accessible and therefore less "open." If information can be modified, repurposed, and redistributed freely it is more responsive, and therefore more "open." This report looks at how "openness" is being or might usefully be employed in the healthcare arena. This area, which now constitutes approximately 16-17 percent of GDP, has long frustrated policymakers, practitioners, and patients. Bringing greater openness to different parts of the healthcare production chain can lead to substantial benefits by stimulating innovation, lowering costs, reducing errors, and closing the gap between discovery and treatment delivery. The report is not exhaustive; it focuses on biomedical research and the disclosure of research findings, processes of evaluating drugs and devices, the emergence of electronic health records, the development and implementation of treatment regimes by caregivers and patients, and the interdependence of the global public health system and data sharing and worldwide collaboration

    Review of Health Examination Surveys in Europe.

    Get PDF

    V Jornadas de Investigación de la Facultad de Ciencia y Tecnología. 2016

    Get PDF
    171 p.I. Abstracts. Ahozko komunikazioak / Comunicaciones orales: 1. Biozientziak: Alderdi Molekularrak / Biociencias: Aspectos moleculares. 2. Biozientziak: Ingurune Alderdiak / Biociencias: Aspectos Ambientales. 3. Fisika eta Ingenieritza Elektronika / Física e Ingeniería Electrónica. 4. Geología / Geología. 5. Matematika / Matemáticas. 6. Kimika / Química. 7. Ingenieritza Kimikoa eta Kimika / Ingeniería Química y Química. II. Abstracts. Idatzizko Komunikazioak (Posterrak) / Comunicaciones escritas (Pósters): 1. Biozientziak / Biociencias. 2. Fisika eta Ingenieritza Elektronika / Física e Ingeniería Electrónica. 3. Geologia / Geologia. 4. Matematika / Matemáticas. 5. Kimika / Química. 6. Ingenieritza Kimikoa / Ingeniería Química
    corecore