225,390 research outputs found

    Visual parameter optimisation for biomedical image processing

    Get PDF
    Background: Biomedical image processing methods require users to optimise input parameters to ensure high quality output. This presents two challenges. First, it is difficult to optimise multiple input parameters for multiple input images. Second, it is difficult to achieve an understanding of underlying algorithms, in particular, relationships between input and output. Results: We present a visualisation method that transforms users’ ability to understand algorithm behaviour by integrating input and output, and by supporting exploration of their relationships. We discuss its application to a colour deconvolution technique for stained histology images and show how it enabled a domain expert to identify suitable parameter values for the deconvolution of two types of images, and metrics to quantify deconvolution performance. It also enabled a breakthrough in understanding by invalidating an underlying assumption about the algorithm. Conclusions: The visualisation method presented here provides analysis capability for multiple inputs and outputs in biomedical image processing that is not supported by previous analysis software. The analysis supported by our method is not feasible with conventional trial-and-error approaches

    Biomedical Image Processing and Classification

    Get PDF
    Biomedical image processing is an interdisciplinary field [...

    Biomedical Image Processing and Classification

    Get PDF
    Biomedical image processing is an interdisciplinary field involving a variety of disciplines, e.g., electronics, computer science, physics, mathematics, physiology, and medicine. Several imaging techniques have been developed, providing many approaches to the study of the human body. Biomedical image processing is finding an increasing number of important applications in, for example, the study of the internal structure or function of an organ and the diagnosis or treatment of a disease. If associated with classification methods, it can support the development of computer-aided diagnosis (CAD) systems, which could help medical doctors in refining their clinical picture

    Biomedical Signal and Image Processing

    Get PDF
    First published in 2005, Biomedical Signal and Image Processing received wide and welcome reception from universities and industry research institutions alike, offering detailed, yet accessible information at the reference, upper undergraduate, and first year graduate level. Retaining all of the quality and precision of the first edition, Biomedical Signal and Image Processing, Second Edition offers a number of revisions and improvements to provide the most up-to-date reference available on the fundamental signal and image processing techniques that are used to process biomedical information. Addressing the application of standard and novel processing techniques to some of today’s principle biomedical signals and images over three sections, the book begins with an introduction to digital signal and image processing, including Fourier transform, image filtering, edge detection, and wavelet transform. The second section investigates specifically biomedical signals, such as ECG, EEG, and EMG, while the third focuses on imaging using CT, X-Ray, MRI, ultrasound, positron, and other biomedical imaging techniques. Updated and expanded, Biomedical Signal and Image Processing, Second Edition offers numerous additional, predominantly MATLAB, examples to all chapters to illustrate the concepts described in the text and ensure a complete understanding of the material. The author takes great care to clarify ambiguities in some mathematical equations and to further explain and justify the more complex signal and image processing concepts to offer a complete and understandable approach to complicated concepts

    From Nano to Macro: Overview of the IEEE Bio Image and Signal Processing Technical Committee

    Get PDF
    The Bio Image and Signal Processing (BISP) Technical Committee (TC) of the IEEE Signal Processing Society (SPS) promotes activities within the broad technical field of biomedical image and signal processing. Areas of interest include medical and biological imaging, digital pathology, molecular imaging, microscopy, and associated computational imaging, image analysis, and image-guided treatment, alongside physiological signal processing, computational biology, and bioinformatics. BISP has 40 members and covers a wide range of EDICS, including CIS-MI: Medical Imaging, BIO-MIA: Medical Image Analysis, BIO-BI: Biological Imaging, BIO: Biomedical Signal Processing, BIO-BCI: Brain/Human-Computer Interfaces, and BIO-INFR: Bioinformatics. BISP plays a central role in the organization of the IEEE International Symposium on Biomedical Imaging (ISBI) and contributes to the technical sessions at the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), and the IEEE International Conference on Image Processing (ICIP). In this paper, we provide a brief history of the TC, review the technological and methodological contributions its community delivered, and highlight promising new directions we anticipate

    Biomedical Signal and Image Processing

    Get PDF
    Written for senior-level and first year graduate students in biomedical signal and image processing, this book describes fundamental signal and image processing techniques that are used to process biomedical information. The book also discusses application of these techniques in the processing of some of the main biomedical signals and images, such as EEG, ECG, MRI, and CT. New features of this edition include the technical updating of each chapter along with the addition of many more examples, the majority of which are MATLAB based
    • …
    corecore