698 research outputs found

    Biomechanical mechanisms underlying exosuit-induced improvements in walking economy after stroke

    Full text link
    Stroke-induced hemiparetic gait is characteristically asymmetric and metabolically expensive. Weakness and impaired control of the paretic ankle contribute to reduced forward propulsion and ground clearance—walking subtasks critical for safe and efficient locomotion. Targeted gait interventions that improve paretic ankle function after stroke are therefore warranted. We have developed textile-based, soft wearable robots that transmit mechanical power generated by off-board or body-worn actuators to the paretic ankle using Bowden cables (soft exosuits) and have demonstrated the exosuits can overcome deficits in paretic limb forward propulsion and ground clearance, ultimately reducing the metabolic cost of hemiparetic walking. This study elucidates the biomechanical mechanisms underlying exosuit-induced reductions in metabolic power. We evaluated the relationships between exosuit-induced changes in the body center of mass (COM) power generated by each limb, individual joint powers, and metabolic power. Compared to walking with an exosuit unpowered, exosuit assistance produced more symmetrical COM power generation during the critical period of the step-to-step transition (22.4±6.4% more symmetric). Changes in individual limb COM power were related to changes in paretic (R2= 0.83, P= 0.004) and nonparetic (R2= 0.73, P= 0.014) ankle power. Interestingly, despite the exosuit providing direct assistance to only the paretic limb, changes in metabolic power were related to changes in nonparetic limb COM power (R2= 0.80, P= 0.007), not paretic limb COM power (P> 0.05). These findings provide a fundamental understanding of how individuals poststroke interact with an exosuit to reduce the metabolic cost of hemiparetic walking.Accepted manuscript2019-03-0

    Robotic design and modelling of medical lower extremity exoskeletons

    Get PDF
    This study aims to explain the development of the robotic Lower Extremity Exoskeleton (LEE) systems between 1960 and 2019 in chronological order. The scans performed in the exoskeleton system’s design have shown that a modeling program, such as AnyBody, and OpenSim, should be used first to observe the design and software animation, followed by the mechanical development of the system using sensors and motors. Also, the use of OpenSim and AnyBody musculoskeletal system software has been proven to play an essential role in designing the human-exoskeleton by eliminating the high costs and risks of the mechanical designs. Furthermore, these modeling systems can enable rapid optimization of the LEE design by detecting the forces and torques falling on the human muscles

    A flexible sensor technology for the distributed measurement of interaction pressure

    Get PDF
    We present a sensor technology for the measure of the physical human-robot interaction pressure developed in the last years at Scuola Superiore Sant'Anna. The system is composed of flexible matrices of opto-electronic sensors covered by a soft silicone cover. This sensory system is completely modular and scalable, allowing one to cover areas of any sizes and shapes, and to measure different pressure ranges. In this work we present the main application areas for this technology. A first generation of the system was used to monitor human-robot interaction in upper- (NEUROExos; Scuola Superiore Sant'Anna) and lower-limb (LOPES; University of Twente) exoskeletons for rehabilitation. A second generation, with increased resolution and wireless connection, was used to develop a pressure-sensitive foot insole and an improved human-robot interaction measurement systems. The experimental characterization of the latter system along with its validation on three healthy subjects is presented here for the first time. A perspective on future uses and development of the technology is finally drafted

    Comfort-Centered Design of a Lightweight and Backdrivable Knee Exoskeleton

    Full text link
    This paper presents design principles for comfort-centered wearable robots and their application in a lightweight and backdrivable knee exoskeleton. The mitigation of discomfort is treated as mechanical design and control issues and three solutions are proposed in this paper: 1) a new wearable structure optimizes the strap attachment configuration and suit layout to ameliorate excessive shear forces of conventional wearable structure design; 2) rolling knee joint and double-hinge mechanisms reduce the misalignment in the sagittal and frontal plane, without increasing the mechanical complexity and inertia, respectively; 3) a low impedance mechanical transmission reduces the reflected inertia and damping of the actuator to human, thus the exoskeleton is highly-backdrivable. Kinematic simulations demonstrate that misalignment between the robot joint and knee joint can be reduced by 74% at maximum knee flexion. In experiments, the exoskeleton in the unpowered mode exhibits 1.03 Nm root mean square (RMS) low resistive torque. The torque control experiments demonstrate 0.31 Nm RMS torque tracking error in three human subjects.Comment: 8 pages, 16figures, Journa

    Modelling friction at the mechanical interface between the human and the exoskeleton

    Get PDF
    In virtual assessments of exoskeletons, often, friction is not modelled even though the actual interface consists of straps or moulded surfaces, where friction could play a significant role. In this work, the human-exoskeleton interaction during the use of a passive lower limb exoskeleton is modelled in three test cases through two different interface models. In particular, a model introducing friction at the human-exoskeleton interface is compared with a more conventional model that uses a kinematic joint to simulate the interface forces. Both the models show a good match between the empirical and predicted distribution of body weight between the subject and the exoskeleton. However, the results also show different trends of the moment required at the assisted joint by the different interface models, highlighting the importance of a realistic interface model to investigate the effectiveness of the exoskeleton in virtual assessments

    Modelling the Physical Human-Exoskeleton Interface

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Prediction of three-dimensional crutch walking patterns using a torque-driven model

    Get PDF
    Computational prediction of 3D crutch-assisted walking patterns is a challenging problem that could be applied to study different biomechanical aspects of crutch walking in virtual subjects, to assist physiotherapists to choose the optimal crutch walking pattern for a specific subject, and to help in the design and control of exoskeletons, when crutches are needed for balance. The aim of this work is to generate a method to predict three-dimensional crutch-assisted walking motions following different patterns without tracking any experimental data. To reach this goal, we collected gait data from a healthy subject performing a four-point non-alternating crutch walking pattern, and developed a 3D torque-driven full-body model of the subject including the crutches and foot- and crutch-ground contact models. First, we developed a predictive (i.e., no tracking of experimental data) optimal control problem formulation to predict crutch walking cycles following the same pattern as the experimental data collected, using different cost functions. To reduce errors with respect to reference data, a cost function combining minimization terms of angular momentum, mechanical power, joint jerk and torque change was chosen. Then, the problem formulation was adapted to handle different foot- and crutch-ground conditions to make it capable of predicting three new crutch walking patterns, one of them at different speeds. A key aspect of our algorithm is that having ground reactions as additional controls allows one to define phases inside the cycle without the need of formulating a multiple-phase problem, thus facilitating the definition of different crutch walking patterns.Postprint (author's final draft

    PD-Fuzzy Control of Single Lower Limb Exoskeleton for Hemiplegia Mobility

    Get PDF
    This paper presents studies in the design and control of single leg exoskeleton for hemiplegia mobility in simulation environment. The exoskeleton is designed to support the affected side of the hemiplegia patient while the other leg functions normally. Hip, knee and ankle joints for both humanoid leg and exoskeleton of the affected side are controlled using PD-Fuzzy control to obtain the required natural torque to allow the exoskeleton to compensate for the deficiency in affected leg to achieve normal symmetric gait. The controller is implemented in MATLAB, and the system behaviour observed in Visual Nastran 4D (VN4D) during simulation. Simulation results show that the exoskeleton can support the humanoid with the required augmentation using the proposed design and control

    Robot Assisted Shoulder Rehabilitation: Biomechanical Modelling, Design and Performance Evaluation

    Get PDF
    The upper limb rehabilitation robots have made it possible to improve the motor recovery in stroke survivors while reducing the burden on physical therapists. Compared to manual arm training, robot-supported training can be more intensive, of longer duration, repetitive and task-oriented. To be aligned with the most biomechanically complex joint of human body, the shoulder, specific considerations have to be made in the design of robotic shoulder exoskeletons. It is important to assist all shoulder degrees-of-freedom (DOFs) when implementing robotic exoskeletons for rehabilitation purposes to increase the range of motion (ROM) and avoid any joint axes misalignments between the robot and human’s shoulder that cause undesirable interaction forces and discomfort to the user. The main objective of this work is to design a safe and a robotic exoskeleton for shoulder rehabilitation with physiologically correct movements, lightweight modules, self-alignment characteristics and large workspace. To achieve this goal a comprehensive review of the existing shoulder rehabilitation exoskeletons is conducted first to outline their main advantages and disadvantages, drawbacks and limitations. The research has then focused on biomechanics of the human shoulder which is studied in detail using robotic analysis techniques, i.e. the human shoulder is modelled as a mechanism. The coupled constrained structure of the robotic exoskeleton connected to a human shoulder is considered as a hybrid human-robot mechanism to solve the problem of joint axes misalignments. Finally, a real-scale prototype of the robotic shoulder rehabilitation exoskeleton was built to test its operation and its ability for shoulder rehabilitation
    • …
    corecore