465 research outputs found

    Data-driven Soft Sensors in the Process Industry

    Get PDF
    In the last two decades Soft Sensors established themselves as a valuable alternative to the traditional means for the acquisition of critical process variables, process monitoring and other tasks which are related to process control. This paper discusses characteristics of the process industry data which are critical for the development of data-driven Soft Sensors. These characteristics are common to a large number of process industry fields, like the chemical industry, bioprocess industry, steel industry, etc. The focus of this work is put on the data-driven Soft Sensors because of their growing popularity, already demonstrated usefulness and huge, though yet not completely realised, potential. A comprehensive selection of case studies covering the three most important Soft Sensor application fields, a general introduction to the most popular Soft Sensor modelling techniques as well as a discussion of some open issues in the Soft Sensor development and maintenance and their possible solutions are the main contributions of this work

    On robust and adaptive soft sensors.

    Get PDF
    In process industries, there is a great demand for additional process information such as the product quality level or the exact process state estimation. At the same time, there is a large amount of process data like temperatures, pressures, etc. measured and stored every moment. This data is mainly measured for process control and monitoring purposes but its potential reaches far beyond these applications. The task of soft sensors is the maximal exploitation of this potential by extracting and transforming the latent information from the data into more useful process knowledge. Theoretically, achieving this goal should be straightforward since the process data as well as the tools for soft sensor development in the form of computational learning methods, are both readily available. However, contrary to this evidence, there are still several obstacles which prevent soft sensors from broader application in the process industry. The identification of the sources of these obstacles and proposing a concept for dealing with them is the general purpose of this work. The proposed solution addressing the issues of current soft sensors is a conceptual architecture for the development of robust and adaptive soft sensing algorithms. The architecture reflects the results of two review studies that were conducted during this project. The first one focuses on the process industry aspects of soft sensor development and application. The main conclusions of this study are that soft sensor development is currently being done in a non-systematic, ad-hoc way which results in a large amount of manual work needed for their development and maintenance. It is also found that a large part of the issues can be related to the process data upon which the soft sensors are built. The second review study dealt with the same topic but this time it was biased towards the machine learning viewpoint. The review focused on the identification of machine learning tools, which support the goals of this work. The machine learning concepts which are considered are: (i) general regression techniques for building of soft sensors; (ii) ensemble methods; (iii) local learning; (iv) meta-learning; and (v) concept drift detection and handling. The proposed architecture arranges the above techniques into a three-level hierarchy, where the actual prediction-making models operate at the bottom level. Their predictions are flexibly merged by applying ensemble methods at the next higher level. Finally from the top level, the underlying algorithm is managed by means of metalearning methods. The architecture has a modular structure that allows new pre-processing, predictive or adaptation methods to be plugged in. Another important property of the architecture is that each of the levels can be equipped with adaptation mechanisms, which aim at prolonging the lifetime of the resulting soft sensors. The relevance of the architecture is demonstrated by means of a complex soft sensing algorithm, which can be seen as its instance. This algorithm provides mechanisms for autonomous selection of data preprocessing and predictive methods and their parameters. It also includes five different adaptation mechanisms, some of which can be applied on a sample-by-sample basis without any requirement to store the on-line data. Other, more complex ones are started only on-demand if the performance of the soft sensor drops below a defined level. The actual soft sensors are built by applying the soft sensing algorithm to three industrial data sets. The different application scenarios aim at the analysis of the fulfilment of the defined goals. It is shown that the soft sensors are able to follow changes in dynamic environment and keep a stable performance level by exploiting the implemented adaptation mechanisms. It is also demonstrated that, although the algorithm is rather complex, it can be applied to develop simple and transparent soft sensors. In another experiment, the soft sensors are built without any manual model selection or parameter tuning, which demonstrates the ability of the algorithm to reduce the effort required for soft sensor development. However, if desirable, the algorithm is at the same time very flexible and provides a number of parameters that can be manually optimised. Evidence of the ability of the algorithm to deploy soft sensors with minimal training data and as such to provide the possibility to save the time consuming and costly training data collection is also given in this work

    Model-Based Problem Solving through Symbolic Regression via Pareto Genetic Programming.

    Get PDF
    Pareto genetic programming methodology is extended by additional generic model selection and generation strategies that (1) drive the modeling engine to creation of models of reduced non-linearity and increased generalization capabilities, and (2) improve the effectiveness of the search for robust models by goal softening and adaptive fitness evaluations. In addition to the new strategies for model development and model selection, this dissertation presents a new approach for analysis, ranking, and compression of given multi-dimensional input-response data for the purpose of balancing the information content of undesigned data sets.

    Soft Computing Techniques and Their Applications in Intel-ligent Industrial Control Systems: A Survey

    Get PDF
    Soft computing involves a series of methods that are compatible with imprecise information and complex human cognition. In the face of industrial control problems, soft computing techniques show strong intelligence, robustness and cost-effectiveness. This study dedicates to providing a survey on soft computing techniques and their applications in industrial control systems. The methodologies of soft computing are mainly classified in terms of fuzzy logic, neural computing, and genetic algorithms. The challenges surrounding modern industrial control systems are summarized based on the difficulties in information acquisition, the difficulties in modeling control rules, the difficulties in control system optimization, and the requirements for robustness. Then, this study reviews soft-computing-related achievements that have been developed to tackle these challenges. Afterwards, we present a retrospect of practical industrial control applications in the fields including transportation, intelligent machines, process industry as well as energy engineering. Finally, future research directions are discussed from different perspectives. This study demonstrates that soft computing methods can endow industry control processes with many merits, thus having great application potential. It is hoped that this survey can serve as a reference and provide convenience for scholars and practitioners in the fields of industrial control and computer science

    On robust and adaptive soft sensors

    Get PDF
    In process industries, there is a great demand for additional process information such as the product quality level or the exact process state estimation. At the same time, there is a large amount of process data like temperatures, pressures, etc. measured and stored every moment. This data is mainly measured for process control and monitoring purposes but its potential reaches far beyond these applications. The task of soft sensors is the maximal exploitation of this potential by extracting and transforming the latent information from the data into more useful process knowledge. Theoretically, achieving this goal should be straightforward since the process data as well as the tools for soft sensor development in the form of computational learning methods, are both readily available. However, contrary to this evidence, there are still several obstacles which prevent soft sensors from broader application in the process industry. The identification of the sources of these obstacles and proposing a concept for dealing with them is the general purpose of this work. The proposed solution addressing the issues of current soft sensors is a conceptual architecture for the development of robust and adaptive soft sensing algorithms. The architecture reflects the results of two review studies that were conducted during this project. The first one focuses on the process industry aspects of soft sensor development and application. The main conclusions of this study are that soft sensor development is currently being done in a non-systematic, ad-hoc way which results in a large amount of manual work needed for their development and maintenance. It is also found that a large part of the issues can be related to the process data upon which the soft sensors are built. The second review study dealt with the same topic but this time it was biased towards the machine learning viewpoint. The review focused on the identification of machine learning tools, which support the goals of this work. The machine learning concepts which are considered are: (i) general regression techniques for building of soft sensors; (ii) ensemble methods; (iii) local learning; (iv) meta-learning; and (v) concept drift detection and handling. The proposed architecture arranges the above techniques into a three-level hierarchy, where the actual prediction-making models operate at the bottom level. Their predictions are flexibly merged by applying ensemble methods at the next higher level. Finally from the top level, the underlying algorithm is managed by means of metalearning methods. The architecture has a modular structure that allows new pre-processing, predictive or adaptation methods to be plugged in. Another important property of the architecture is that each of the levels can be equipped with adaptation mechanisms, which aim at prolonging the lifetime of the resulting soft sensors. The relevance of the architecture is demonstrated by means of a complex soft sensing algorithm, which can be seen as its instance. This algorithm provides mechanisms for autonomous selection of data preprocessing and predictive methods and their parameters. It also includes five different adaptation mechanisms, some of which can be applied on a sample-by-sample basis without any requirement to store the on-line data. Other, more complex ones are started only on-demand if the performance of the soft sensor drops below a defined level. The actual soft sensors are built by applying the soft sensing algorithm to three industrial data sets. The different application scenarios aim at the analysis of the fulfilment of the defined goals. It is shown that the soft sensors are able to follow changes in dynamic environment and keep a stable performance level by exploiting the implemented adaptation mechanisms. It is also demonstrated that, although the algorithm is rather complex, it can be applied to develop simple and transparent soft sensors. In another experiment, the soft sensors are built without any manual model selection or parameter tuning, which demonstrates the ability of the algorithm to reduce the effort required for soft sensor development. However, if desirable, the algorithm is at the same time very flexible and provides a number of parameters that can be manually optimised. Evidence of the ability of the algorithm to deploy soft sensors with minimal training data and as such to provide the possibility to save the time consuming and costly training data collection is also given in this work.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Proceedings of the 10th International Conference on Ecological Informatics: translating ecological data into knowledge and decisions in a rapidly changing world: ICEI 2018

    Get PDF
    The Conference Proceedings are an impressive display of the current scope of Ecological Informatics. Whilst Data Management, Analysis, Synthesis and Forecasting have been lasting popular themes over the past nine biannual ICEI conferences, ICEI 2018 addresses distinctively novel developments in Data Acquisition enabled by cutting edge in situ and remote sensing technology. The here presented ICEI 2018 abstracts captures well current trends and challenges of Ecological Informatics towards: • regional, continental and global sharing of ecological data, • thorough integration of complementing monitoring technologies including DNA-barcoding, • sophisticated pattern recognition by deep learning, • advanced exploration of valuable information in ‘big data’ by means of machine learning and process modelling, • decision-informing solutions for biodiversity conservation and sustainable ecosystem management in light of global changes

    Proceedings of the 10th International Conference on Ecological Informatics: translating ecological data into knowledge and decisions in a rapidly changing world: ICEI 2018

    Get PDF
    The Conference Proceedings are an impressive display of the current scope of Ecological Informatics. Whilst Data Management, Analysis, Synthesis and Forecasting have been lasting popular themes over the past nine biannual ICEI conferences, ICEI 2018 addresses distinctively novel developments in Data Acquisition enabled by cutting edge in situ and remote sensing technology. The here presented ICEI 2018 abstracts captures well current trends and challenges of Ecological Informatics towards: • regional, continental and global sharing of ecological data, • thorough integration of complementing monitoring technologies including DNA-barcoding, • sophisticated pattern recognition by deep learning, • advanced exploration of valuable information in ‘big data’ by means of machine learning and process modelling, • decision-informing solutions for biodiversity conservation and sustainable ecosystem management in light of global changes

    Data-driven sensors and their applications

    Get PDF
    Virtuální senzory jsou postupně se rozšiřující technikou v oblasti průmyslových měření. Jedná se o počítačové programy, které za pomoci dříve získaných dat poskytují další údaje podobně jako klasické hardwarové senzory. Tyto údaje získávají pomocí prediktivních modelů založených na metodách strojového učení jako jsou například neuronové sítě nebo support vector machines. Tato práce obsahuje především rešerši fungování, struktur a tvorby virtuálních senzorů. Dále popisuje strojové učení, rozdělení jeho algoritmů a seznamuje s metodami běžně využívanými v oblasti virtuálních senzorů. Ke konci autor popisuje jejich možný budoucí vývoj a směr dalších aplikací.Soft sensors are a gradually expanding technique in the field of industrial measurement. These sensors are computer programs that provide additional data using previously acquired data in a similar way to conventional hardware sensors. The additional data is obtained using predictive models based on machine learning methods such as neural networks or support vector machines. This work mainly includes a research on the function, structure and creation of soft sensors. It also describes machine learning, the distribution of its algorithms and introduces the methods commonly used in the field of virtual sensors. Towards the end, the author describes possible future development of soft sensors and the direction of further applications.

    Research and technology 1995 annual report

    Get PDF
    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1995 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as technology transfer activities. Major areas of research include environmental engineering, automation, robotics, advanced software, materials science, life sciences, mechanical engineering, nondestructive evaluation, and industrial engineering

    Machine learning for microalgae detection and utilization

    Get PDF
    Microalgae are essential parts of marine ecology, and they play a key role in species balance. Microalgae also have significant economic value. However, microalgae are too tiny, and there are many different kinds of microalgae in a single drop of seawater. It is challenging to identify microalgae species and monitor microalgae changes. Machine learning techniques have achieved massive success in object recognition and classification, and have attracted a wide range of attention. Many researchers have introduced machine learning algorithms into microalgae applications, and similarly significant effects are gained. The paper summarizes recent advances based on various machine learning algorithms in microalgae applications, such as microalgae classification, bioenergy generation from microalgae, environment purification with microalgae, and microalgae growth monitor. Finally, we prospect development of machine learning algorithms in microalgae treatment in the future
    corecore