2,939 research outputs found

    Programmed cell death 6 interacting protein (PDCD6IP) and Rabenosyn-5 (ZFYVE20) are potential urinary biomarkers for upper gastrointestinal cancer

    Get PDF
    PURPOSE: Cancer of the upper digestive tract (uGI) is a major contributor to cancer-related death worldwide. Due to a rise in occurrence, together with poor survival rates and a lack of diagnostic or prognostic clinical assays, there is a clear need to establish molecular biomarkers. EXPERIMENTAL DESIGN: Initial assessment was performed on urine samples from 60 control and 60 uGI cancer patients using MS to establish a peak pattern or fingerprint model, which was validated by a further set of 59 samples. RESULTS: We detected 86 cluster peaks by MS above frequency and detection thresholds. Statistical testing and model building resulted in a peak profiling model of five relevant peaks with 88% overall sensitivity and 91% specificity, and overall correctness of 90%. High-resolution MS of 40 samples in the 2-10 kDa range resulted in 646 identified proteins, and pattern matching identified four of the five model peaks within significant parameters, namely programmed cell death 6 interacting protein (PDCD6IP/Alix/AIP1), Rabenosyn-5 (ZFYVE20), protein S100A8, and protein S100A9, of which the first two were validated by Western blotting. CONCLUSIONS AND CLINICAL RELEVANCE: We demonstrate that MS analysis of human urine can identify lead biomarker candidates in uGI cancers, which makes this technique potentially useful in defining and consolidating biomarker patterns for uGI cancer screening

    Applications of liquid chromatography coupled to mass spectrometry-based metabolomics in clinical chemistry and toxicology: A review.

    Get PDF
    International audienceThe metabolome is the set of small molecular mass organic compounds found in a given biological media. It includes all organic substances naturally occurring from the metabolism of the studied living organism, except biological polymers, but also xenobiotics and their biotransformation products. The metabolic fingerprints of biofluids obtained by mass spectrometry (MS) or nuclear magnetic resonance (NMR)-based methods contain a few hundreds to thousands of signals related to both genetic and environmental contributions. Metabolomics, which refers to the untargeted quantitative or semi-quantitative analysis of the metabolome, is a promising tool for biomarker discovery. Although proof-of-concept studies by metabolomics-based approaches in the field of toxicology and clinical chemistry have initially been performed using NMR, the use of liquid chromatography hyphenated to mass spectrometry (LC/MS) has increased over the recent years, providing complementary results to those obtained with other approaches. This paper reviews and comments the input of LC/MS in this field. We describe here the overall process of analysis, review some seminal papers in the field and discuss the perspectives of metabolomics for the biomonitoring of exposure and diagnosis of diseases

    Proteomic Serum Biomarkers and Their Potential Application in Cancer Screening Programs

    Get PDF
    Early diagnosis of cancer is of pivotal importance to reduce disease-related mortality. There is great need for non-invasive screening methods, yet current screening protocols have limited sensitivity and specificity. The use of serum biomarkers to discriminate cancer patients from healthy persons might be a tool to improve screening programs. Mass spectrometry based proteomics is widely applied as a technology for mapping and identifying peptides and proteins in body fluids. One commonly used approach in proteomics is peptide and protein profiling. Here, we present an overview of profiling methods that have the potential for implementation in a clinical setting and in national screening programs

    Early Detection of Ovarian Cancer in Samples Pre-Diagnosis Using CA125 and MALDI-MS Peaks

    Get PDF
    Aim: A nested case-control discovery study was undertaken 10 test whether information within the serum peptidome can improve on the utility of CA125 for early ovarian cancer detection. Materials and Methods: High-throughput matrix-assisted laser desorption ionisation mass spectrometry (MALDI-MS) was used to profile 295 serum samples from women pre-dating their ovarian cancer diagnosis and from 585 matched control samples. Classification rules incorporating CA125 and MS peak intensities were tested for discriminating ability. Results: Two peaks were found which in combination with CA125 discriminated cases from controls up to 15 and 11 months before diagnosis, respectively, and earlier than using CA125 alone. One peak was identified as connective tissue-activating peptide III (CTAPIII), whilst the other was putatively identified as platelet factor 4 (PF4). ELISA data supported the down-regulation of PF4 in early cancer cases. Conclusion: Serum peptide information with CA125 improves lead time for early detection of ovarian cancer. The candidate markers are platelet-derived chemokines, suggesting a link between platelet function and tumour development

    Nonnegative principal component analysis for mass spectral serum profiles and biomarker discovery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As a novel cancer diagnostic paradigm, mass spectroscopic serum proteomic pattern diagnostics was reported superior to the conventional serologic cancer biomarkers. However, its clinical use is not fully validated yet. An important factor to prevent this young technology to become a mainstream cancer diagnostic paradigm is that robustly identifying cancer molecular patterns from high-dimensional protein expression data is still a challenge in machine learning and oncology research. As a well-established dimension reduction technique, PCA is widely integrated in pattern recognition analysis to discover cancer molecular patterns. However, its global feature selection mechanism prevents it from capturing local features. This may lead to difficulty in achieving high-performance proteomic pattern discovery, because only features interpreting global data behavior are used to train a learning machine.</p> <p>Methods</p> <p>In this study, we develop a nonnegative principal component analysis algorithm and present a nonnegative principal component analysis based support vector machine algorithm with sparse coding to conduct a high-performance proteomic pattern classification. Moreover, we also propose a nonnegative principal component analysis based filter-wrapper biomarker capturing algorithm for mass spectral serum profiles.</p> <p>Results</p> <p>We demonstrate the superiority of the proposed algorithm by comparison with six peer algorithms on four benchmark datasets. Moreover, we illustrate that nonnegative principal component analysis can be effectively used to capture meaningful biomarkers.</p> <p>Conclusion</p> <p>Our analysis suggests that nonnegative principal component analysis effectively conduct local feature selection for mass spectral profiles and contribute to improving sensitivities and specificities in the following classification, and meaningful biomarker discovery.</p

    Untargeted LC-HRMS-based metabolomics to identify novel biomarkers of metastatic colorectal cancer

    Get PDF
    Colorectal cancer is one of the main causes of cancer death worldwide, and novel biomarkers are urgently needed for its early diagnosis and treatment. The utilization of metabolomics to identify and quantify metabolites in body fluids may allow the detection of changes in their concentrations that could serve as diagnostic markers for colorectal cancer and may also represent new therapeutic targets. Metabolomics generates a pathophysiological ‘fingerprint’ that is unique to each individual. The purpose of our study was to identify a differential metabolomic signature for metastatic colorectal cancer. Serum samples from 60 healthy controls and 65 patients with metastatic colorectal cancer were studied by liquid chromatography coupled to high-resolution mass spectrometry in an untargeted metabolomic approach. Multivariate analysis revealed a separation between patients with metastatic colorectal cancer and healthy controls, who significantly differed in serum concentrations of one endocannabinoid, two glycerophospholipids, and two sphingolipids. These findings demonstrate that metabolomics using liquid-chromatography coupled to high-resolution mass spectrometry offers a potent diagnostic tool for metastatic colorectal cancer.This study was supported by a grant (n° 15CC056/DTS17/00081- ISCIII-FEDER) from the Fundación para la Investigación Biosanitaria de Andalucía Oriental (FIBAO) and Roche Pharma S.L. Authors from the Fundación MEDINA acknowledge the receipt of financial support from this public-private partnership of Merck Sharp & Dohme de España S.A. with the University of Granada and Andalusian Regional Government (PIN-0474-2016)
    corecore