42 research outputs found

    A novel method of 3D motion object's position perception

    Get PDF
    With the development of industrial automation, location measurement of 3D objects is becoming more and more important, especially as it can provide necessary positional parameters for the manipulator to grasp the object accurately. In view of the disabled object which is in widespread use currently, its image is captured to obtain positional parameters and transmitted to manipulators in industry. The above process is delayed, affecting the work efficiency of the manipulator. A method for calculating the position information of target object in motion is proposed. This method uses monocular vision technology to track 3D moving objects, then uses contour sorting method to extract the minimum constrained contour rectangle, and combines the video alignment technology to realize the tracking. Thus, the measurement error is reduced. The experimental results and analysis show that the adopted measurement method is effective

    Combining deep neural network with traditional classifier to recognize facial expressions

    Get PDF
    Facial expressions are important in people's daily communications. Recognising facial expressions also has many important applications in the areas such as healthcare and e-learning. Existing facial expression recognition systems have problems such as background interference. Furthermore, systems using traditional approaches like SVM (Support Vector Machine) have weakness in dealing with unseen images. Systems using deep neural network have problems such as requirement for GPU, longer training time and requirement for large memory. To overcome the shortcomings of pure deep neural network and traditional facial recognition approaches, this paper presents a new facial expression recognition approach which has image pre-processing techniques to remove unnecessary background information and combines deep neural network ResNet50 and a traditional classifier-the multiclass model for Support Vector Machine to recognise facial expressions. The proposed approach has better recognition accuracy than traditional approaches like Support Vector Machine and doesn't need GPU. We have compared 3 proposed frameworks with a traditional SVM approach against the Karolinska Directed Emotional Faces (KDEF) Database, the Japanese Female Facial Expression (JAFFE) Database and the extended Cohn-Kanade dataset (CK+), respectively. The experiment results show that the features extracted from the layer 49Relu have the best performance for these three datasets

    An Insect-Inspired Target Tracking Mechanism for Autonomous Vehicles

    Get PDF
    Target tracking is a complicated task from an engineering perspective, especially where targets are small and seen against complex natural environments. Due to the high demand for robust target tracking algorithms a great deal of research has focused on this area. However, most engineering solutions developed for this purpose are often unreliable in real world conditions or too computationally expensive to be used in real-time applications. While engineering methods try to solve the problem of target detection and tracking by using high resolution input images, fast processors, with typically computationally expensive methods, a quick glance at nature provides evidence that practical real world solutions for target tracking exist. Many animals track targets for predation, territorial or mating purposes and with millions of years of evolution behind them, it seems reasonable to assume that these solutions are highly efficient. For instance, despite their low resolution compound eyes and tiny brains, many flying insects have evolved superb abilities to track targets in visual clutter even in the presence of other distracting stimuli, such as swarms of prey and conspecifics. The accessibility of the dragonfly for stable electrophysiological recordings makes this insect an ideal and tractable model system for investigating the neuronal correlates for complex tasks such as target pursuit. Studies on dragonflies identified and characterized a set of neurons likely to mediate target detection and pursuit referred to as ‘small target motion detector’ (STMD) neurons. These neurons are selective for tiny targets, are velocity-tuned, contrast-sensitive and respond robustly to targets even against the motion of background. These neurons have shown several high-order properties which can contribute to the dragonfly’s ability to robustly pursue prey with over a 97% success rate. These include the recent electrophysiological observations of response ‘facilitation’ (a slow build-up of response to targets that move on long, continuous trajectories) and ‘selective attention’, a competitive mechanism that selects one target from alternatives. In this thesis, I adopted a bio-inspired approach to develop a solution for the problem of target tracking and pursuit. Directly inspired by recent physiological breakthroughs in understanding the insect brain, I developed a closed-loop target tracking system that uses an active saccadic gaze fixation strategy inspired by insect pursuit. First, I tested this model in virtual world simulations using MATLAB/Simulink. The results of these simulations show robust performance of this insect-inspired model, achieving high prey capture success even within complex background clutter, low contrast and high relative speed of pursued prey. Additionally, these results show that inclusion of facilitation not only substantially improves success for even short-duration pursuits, it also enhances the ability to ‘attend’ to one target in the presence of distracters. This inspect-inspired system has a relatively simple image processing strategy compared to state-of-the-art trackers developed recently for computer vision applications. Traditional machine vision approaches incorporate elaborations to handle challenges and non-idealities in the natural environments such as local flicker and illumination changes, and non-smooth and non-linear target trajectories. Therefore, the question arises as whether this insect inspired tracker can match their performance when given similar challenges? I investigated this question by testing both the efficacy and efficiency of this insect-inspired model in open-loop, using a widely-used set of videos recorded under natural conditions. I directly compared the performance of this model with several state-of-the-art engineering algorithms using the same hardware, software environment and stimuli. This insect-inspired model exhibits robust performance in tracking small moving targets even in very challenging natural scenarios, outperforming the best of the engineered approaches. Furthermore, it operates more efficiently compared to the other approaches, in some cases dramatically so. Computer vision literature traditionally test target tracking algorithms only in open-loop. However, one of the main purposes for developing these algorithms is implementation in real-time robotic applications. Therefore, it is still unclear how these algorithms might perform in closed-loop real-world applications where inclusion of sensors and actuators on a physical robot results in additional latency which can affect the stability of the feedback process. Additionally, studies show that animals interact with the target by changing eye or body movements, which then modulate the visual inputs underlying the detection and selection task (via closed-loop feedback). This active vision system may be a key to exploiting visual information by the simple insect brain for complex tasks such as target tracking. Therefore, I implemented this insect-inspired model along with insect active vision in a robotic platform. I tested this robotic implementation both in indoor and outdoor environments against different challenges which exist in real-world conditions such as vibration, illumination variation, and distracting stimuli. The experimental results show that the robotic implementation is capable of handling these challenges and robustly pursuing a target even in highly challenging scenarios.Thesis (Ph.D.) -- University of Adelaide, School of Mechanical Engineering, 201

    A Semi-Supervised Synthetic Aperture Radar (SAR) Image Recognition Algorithm Based on an Attention Mechanism and Bias-Variance Decomposition

    Get PDF
    Synthetic Aperture Radar (SAR) target recognition is an important research direction of SAR image interpretation. In recent years, most of machine learning methods applied to SAR target recognition are supervised learning which requires a large number of labeled SAR images. However, labeling SAR images is expensive and time-consuming. We hereby propose an end-to-end semi-supervised recognition method based on an attention mechanism and bias-variance decomposition, which focuses on the unlabeled data screening and pseudo-labels assignment. Different from other learning methods, the training set in each iteration is determined by a module that we here propose, called dataset attention module (DAM). Through DAM, the contributing unlabeled data will have more possibilities to be added into the training set, while the non-contributing and hard-to-learn unlabeled data will receive less attention. During the training process, each unlabeled data will be input into the network for prediction. The pseudo-label of the unlabeled data is considered to be the most probable classification in the multiple predictions, which reduces the risk of the single prediction. We calculate the prediction bias-and-variance of all the unlabeled data and use the result as the criteria to screen the unlabeled data in DAM. In this paper, we carry out semi-supervised learning experiments under different unlabeled rates on the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset. The recognition accuracy of our method is better than several state of the art semi-supervised learning algorithms

    Object Recognition

    Get PDF
    Vision-based object recognition tasks are very familiar in our everyday activities, such as driving our car in the correct lane. We do these tasks effortlessly in real-time. In the last decades, with the advancement of computer technology, researchers and application developers are trying to mimic the human's capability of visually recognising. Such capability will allow machine to free human from boring or dangerous jobs

    Biologically Inspired Visual Control of Flying Robots

    Get PDF
    Insects posses an incredible ability to navigate their environment at high speed, despite having small brains and limited visual acuity. Through selective pressure they have evolved computationally efficient means for simultaneously performing navigation tasks and instantaneous control responses. The insect’s main source of information is visual, and through a hierarchy of processes this information is used for perception; at the lowest level are local neurons for detecting image motion and edges, at the higher level are interneurons to spatially integrate the output of previous stages. These higher level processes could be considered as models of the insect's environment, reducing the amount of information to only that which evolution has determined relevant. The scope of this thesis is experimenting with biologically inspired visual control of flying robots through information processing, models of the environment, and flight behaviour. In order to test these ideas I developed a custom quadrotor robot and experimental platform; the 'wasp' system. All algorithms ran on the robot, in real-time or better, and hypotheses were always verified with flight experiments. I developed a new optical flow algorithm that is computationally efficient, and able to be applied in a regular pattern to the image. This technique is used later in my work when considering patterns in the image motion field. Using optical flow in the log-polar coordinate system I developed attitude estimation and time-to-contact algorithms. I find that the log-polar domain is useful for analysing global image motion; and in many ways equivalent to the retinotopic arrange- ment of neurons in the optic lobe of insects, used for the same task. I investigated the role of depth in insect flight using two experiments. In the first experiment, to study how concurrent visual control processes might be combined, I developed a control system using the combined output of two algorithms. The first algorithm was a wide-field optical flow balance strategy and the second an obstacle avoidance strategy which used inertial information to estimate the depth to objects in the environment - objects whose depth was significantly different to their surround- ings. In the second experiment I created an altitude control system which used a model of the environment in the Hough space, and a biologically inspired sampling strategy, to efficiently detect the ground. Both control systems were used to control the flight of a quadrotor in an indoor environment. The methods that insects use to perceive edges and control their flight in response had not been applied to artificial systems before. I developed a quadrotor control system that used the distribution of edges in the environment to regulate the robot height and avoid obstacles. I also developed a model that predicted the distribution of edges in a static scene, and using this prediction was able to estimate the quadrotor altitude

    Biologically Inspired Progressive Enhancement Target Detection from Heavy Cluttered SAR Images

    Get PDF
    High-resolution synthetic aperture radar (SAR) can provide a rich information source for target detection and greatly increase the types and number of target characteristics. How to efficiently extract the target of interest from large amounts of SAR images is the main research issue. Inspired by the biological visual systems, researchers have put forward a variety of biologically inspired visual models for target detection, such as classical saliency map and HMAX. But these methods only model the retina or visual cortex in the visual system, which limit their ability to extract and integrate targets characteristics; thus, their detection accuracy and efficiency can be easily disturbed in complex environment. Based on the analysis of retina and visual cortex in biological visual systems, a progressive enhancement detection method for SAR targets is proposed in this paper. The detection process is divided into RET, PVC, and AVC three stages which simulate the information processing chain of retina, primary and advanced visual cortex, respectively. RET stage is responsible for eliminating the redundant information of input SAR image, enhancing inputs’ features, and transforming them to excitation signals. PVC stage obtains primary features through the competition mechanism between the neurons and the combination of characteristics, and then completes the rough detection. In the AVC stage, the neurons with more receptive field compound more precise advanced features, completing the final fine detection. The experimental results obtained in this study show that the proposed approach has better detection results in comparison with the traditional methods in complex scenes
    corecore