13,449 research outputs found

    Spike-based computation using classical recurrent neural networks

    Full text link
    Spiking neural networks are a type of artificial neural networks in which communication between neurons is only made of events, also called spikes. This property allows neural networks to make asynchronous and sparse computations and therefore to drastically decrease energy consumption when run on specialized hardware. However, training such networks is known to be difficult, mainly due to the non-differentiability of the spike activation, which prevents the use of classical backpropagation. This is because state-of-the-art spiking neural networks are usually derived from biologically-inspired neuron models, to which are applied machine learning methods for training. Nowadays, research about spiking neural networks focuses on the design of training algorithms whose goal is to obtain networks that compete with their non-spiking version on specific tasks. In this paper, we attempt the symmetrical approach: we modify the dynamics of a well-known, easily trainable type of recurrent neural network to make it event-based. This new RNN cell, called the Spiking Recurrent Cell, therefore communicates using events, i.e. spikes, while being completely differentiable. Vanilla backpropagation can thus be used to train any network made of such RNN cell. We show that this new network can achieve performance comparable to other types of spiking networks in the MNIST benchmark and its variants, the Fashion-MNIST and the Neuromorphic-MNIST. Moreover, we show that this new cell makes the training of deep spiking networks achievable.Comment: 12 pages, 3 figure

    Biologically plausible deep learning -- but how far can we go with shallow networks?

    Get PDF
    Training deep neural networks with the error backpropagation algorithm is considered implausible from a biological perspective. Numerous recent publications suggest elaborate models for biologically plausible variants of deep learning, typically defining success as reaching around 98% test accuracy on the MNIST data set. Here, we investigate how far we can go on digit (MNIST) and object (CIFAR10) classification with biologically plausible, local learning rules in a network with one hidden layer and a single readout layer. The hidden layer weights are either fixed (random or random Gabor filters) or trained with unsupervised methods (PCA, ICA or Sparse Coding) that can be implemented by local learning rules. The readout layer is trained with a supervised, local learning rule. We first implement these models with rate neurons. This comparison reveals, first, that unsupervised learning does not lead to better performance than fixed random projections or Gabor filters for large hidden layers. Second, networks with localized receptive fields perform significantly better than networks with all-to-all connectivity and can reach backpropagation performance on MNIST. We then implement two of the networks - fixed, localized, random & random Gabor filters in the hidden layer - with spiking leaky integrate-and-fire neurons and spike timing dependent plasticity to train the readout layer. These spiking models achieve > 98.2% test accuracy on MNIST, which is close to the performance of rate networks with one hidden layer trained with backpropagation. The performance of our shallow network models is comparable to most current biologically plausible models of deep learning. Furthermore, our results with a shallow spiking network provide an important reference and suggest the use of datasets other than MNIST for testing the performance of future models of biologically plausible deep learning.Comment: 14 pages, 4 figure
    • …
    corecore