35 research outputs found

    BiologicalNetworks - tools enabling the integration of multi-scale data for the host-pathogen studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding of immune response mechanisms of pathogen-infected host requires multi-scale analysis of genome-wide data. Data integration methods have proved useful to the study of biological processes in model organisms, but their systematic application to the study of host immune system response to a pathogen and human disease is still in the initial stage.</p> <p>Results</p> <p>To study host-pathogen interaction on the systems biology level, an extension to the previously described BiologicalNetworks system is proposed. The developed methods and data integration and querying tools allow simplifying and streamlining the process of integration of diverse experimental data types, including molecular interactions and phylogenetic classifications, genomic sequences and protein structure information, gene expression and virulence data for pathogen-related studies. The data can be integrated from the databases and user's files for both public and private use.</p> <p>Conclusions</p> <p>The developed system can be used for the systems-level analysis of host-pathogen interactions, including host molecular pathways that are induced/repressed during the infections, co-expressed genes, and conserved transcription factor binding sites. Previously unknown to be associated with the influenza infection genes were identified and suggested for further investigation as potential drug targets. Developed methods and data are available through the Java application (from BiologicalNetworks program at <url>http://www.biologicalnetworks.org</url>) and web interface (at <url>http://flu.sdsc.edu</url>).</p

    BiologicalNetworks 2.0 - an integrative view of genome biology data

    Get PDF
    Abstract Background A significant problem in the study of mechanisms of an organism's development is the elucidation of interrelated factors which are making an impact on the different levels of the organism, such as genes, biological molecules, cells, and cell systems. Numerous sources of heterogeneous data which exist for these subsystems are still not integrated sufficiently enough to give researchers a straightforward opportunity to analyze them together in the same frame of study. Systematic application of data integration methods is also hampered by a multitude of such factors as the orthogonal nature of the integrated data and naming problems. Results Here we report on a new version of BiologicalNetworks, a research environment for the integral visualization and analysis of heterogeneous biological data. BiologicalNetworks can be queried for properties of thousands of different types of biological entities (genes/proteins, promoters, COGs, pathways, binding sites, and other) and their relations (interactions, co-expression, co-citations, and other). The system includes the build-pathways infrastructure for molecular interactions/relations and module discovery in high-throughput experiments. Also implemented in BiologicalNetworks are the Integrated Genome Viewer and Comparative Genomics Browser applications, which allow for the search and analysis of gene regulatory regions and their conservation in multiple species in conjunction with molecular pathways/networks, experimental data and functional annotations. Conclusions The new release of BiologicalNetworks together with its back-end database introduces extensive functionality for a more efficient integrated multi-level analysis of microarray, sequence, regulatory, and other data. BiologicalNetworks is freely available at http://www.biologicalnetworks.org

    IntegromeDB: an integrated system and biological search engine

    Get PDF
    Abstract Background With the growth of biological data in volume and heterogeneity, web search engines become key tools for researchers. However, general-purpose search engines are not specialized for the search of biological data. Description Here, we present an approach at developing a biological web search engine based on the Semantic Web technologies and demonstrate its implementation for retrieving gene- and protein-centered knowledge. The engine is available at http://www.integromedb.org. Conclusions The IntegromeDB search engine allows scanning data on gene regulation, gene expression, protein-protein interactions, pathways, metagenomics, mutations, diseases, and other gene- and protein-related data that are automatically retrieved from publicly available databases and web pages using biological ontologies. To perfect the resource design and usability, we welcome and encourage community feedback

    Systems Biology of Gastric Cancer: Perspectives on the Omics-Based Diagnosis and Treatment

    Get PDF
    Gastric cancer is the fifth most diagnosed cancer in the world, affecting more than a million people and causing nearly 783,000 deaths each year. The prognosis of advanced gastric cancer remains extremely poor despite the use of surgery and adjuvant therapy. Therefore, understanding the mechanism of gastric cancer development, and the discovery of novel diagnostic biomarkers and therapeutics are major goals in gastric cancer research. Here, we review recent progress in application of omics technologies in gastric cancer research, with special focus on the utilization of systems biology approaches to integrate multi-omics data. In addition, the association between gastrointestinal microbiota and gastric cancer are discussed, which may offer insights in exploring the novel microbiota-targeted therapeutics. Finally, the application of data-driven systems biology and machine learning approaches could provide a predictive understanding of gastric cancer, and pave the way to the development of novel biomarkers and rational design of cancer therapeutics

    Visualizing genome and systems biology: technologies, tools, implementation techniques and trends, past, present and future.

    Get PDF
    "Α picture is worth a thousand words." This widely used adage sums up in a few words the notion that a successful visual representation of a concept should enable easy and rapid absorption of large amounts of information. Although, in general, the notion of capturing complex ideas using images is very appealing, would 1000 words be enough to describe the unknown in a research field such as the life sciences? Life sciences is one of the biggest generators of enormous datasets, mainly as a result of recent and rapid technological advances; their complexity can make these datasets incomprehensible without effective visualization methods. Here we discuss the past, present and future of genomic and systems biology visualization. We briefly comment on many visualization and analysis tools and the purposes that they serve. We focus on the latest libraries and programming languages that enable more effective, efficient and faster approaches for visualizing biological concepts, and also comment on the future human-computer interaction trends that would enable for enhancing visualization further

    Computational Design of Synthetic Microbial Communities

    Get PDF
    In naturally occurring microbial systems, species rarely exist in isolation. There is strong ecological evidence for a positive relationship between species diversity and the functional output of communities. The pervasiveness of these communities in nature highlights that there may be advantages for engineered strains to exist in cocultures as well. Building synthetic microbial communities allows us to create distributed systems that mitigate issues often found in engineering a monoculture, especially when functional complexity is increasing. The establishment of synthetic microbial communities is a major challenge we must overcome in order to implement coordinated multicellular systems. Here I present computational tools that help us design engineering strategies for establishing synthetic microbial communities. Using these tools I identify promising candidates for several design scenarios. This work highlights the importance of parameter inference and model selection to build robust communities. The findings highlight important interaction motifs that provide stability, and identify requirements for selecting genetic parts and tuning the community composition. Additionally, I show that fundamental interactions in small synthetic communities can produce chaotic behaviour that is unforecastable. Together these findings have important ramifications for how we build synthetic communities in the lab, and the considerations of interactions in microbiomes we manipulate

    Development of computational tools and resources for systems biology of bacterial pathogens

    Get PDF
    Bacterial pathogens are a major cause of diseases in human, agricultural plants and farm animals. Even after decades of research they remain a challenge to health care as they are known to rapidly evolve and develop resistance to the existing drugs. Systems biology is an emerging area of research where all of the components of the system, their interactions, and the dynamics can be studied in a comprehensive, quantitative, and integrative fashion to generate predictive models. When applied to bacterial pathogenesis, systems biology approaches will help identify potential novel molecular targets for drug discovery. A pre-requisite for conducting systems analysis is the identification of the building blocks of the system i.e. individual components of the system (structural annotation), identification of their functions (functional annotation) and identification of the interactions among the individual components (interaction prediction). In the context of bacterial pathogenesis, it is necessary to identify the host-pathogen interactions. This dissertation work describes computational resources that enable comprehensive systems level study of host pathogen system to enhance our understanding of bacterial pathogenesis. It specifically focuses on improving the structural and functional annotation of pathogen genomes as well as identifying host-pathogen interactions at a genome scale. The novel contributions of this dissertation towards systems biology of bacterial pathogens include three computational tools/resources. “TAAPP” (Tiling array analysis pipeline for prokaryotes) is a web based tool for the analysis of whole genome tiling array data for bacterial pathogens. TAAPP helps improve the structural annotation of bacterial genomes. “ISO-IEA” (Inferred from sequence orthology - Inferred from electronic annotation) is a tool that can be used for the functional annotation of any sequenced genome. “HPIDB” (Host pathogen interaction database) is developed with data a mining capability that includes host-pathogen interaction prediction. The new knowledge gained due to the implementation of these tools is the description of the non coding RNA as well as a computationally predicted host-pathogen interaction network for the human respiratory pathogen Streptococcus pneumoniae. In summary, the computation tools and resources developed in this dissertation study will enable building systems biology models of bacterial pathogens

    Investigation of HIV-TB co-infection through analysis of the potential impact of host genetic variation on host-pathogen protein interactions

    Get PDF
    HIV and Mycobacterium tuberculosis (Mtb) co-infection causes treatment and diagnostic difficulties, which places a major burden on health care systems in settings with high prevalence of both infectious diseases, such as South Africa. Human genetic variation adds further complexity, with variants affecting disease susceptibility and response to treatment. The identification of variants in African populations is affected by reference mapping bias, especially in complex regions like the Major Histocompatibility Complex (MHC), which plays an important role in the immune response to HIV and Mtb infection. We used a graph-based approach to identify novel variants in the MHC region within African samples without mapping to the canonical reference genome. We generated a host-pathogen functional interaction network made up of inter- and intraspecies protein interactions, gene expression during co-infection, drug-target interactions, and human genetic variation. Differential expression and network centrality properties were used to prioritise proteins that may be important in co-infection. Using the interaction network we identified 28 human proteins that interact with both pathogens (”bridge” proteins). Network analysis showed that while MHC proteins did not have significantly higher centrality measures than non-MHC proteins, bridge proteins had significantly shorter distance to MHC proteins. Proteins that were significantly differentially expressed during co-infection or contained variants clinically-associated with HIV or TB also had significantly stronger network properties. Finally, we identified common and consequential variants within prioritised proteins that may be clinically-associated with HIV and TB. The integrated network was extensively annotated and stored in a graph database that enables rapid and high throughput prioritisation of sets of genes or variants, facilitates detailed investigations and allows network-based visualisation

    Tools and Principles for Microbial Gene Circuit Engineering

    Get PDF
    AbstractSynthetic biologists aim to construct novel genetic circuits with useful applications through rational design and forward engineering. Given the complexity of signal processing that occurs in natural biological systems, engineered microbes have the potential to perform a wide range of desirable tasks that require sophisticated computation and control. Realising this goal will require accurate predictive design of complex synthetic gene circuits and accompanying large sets of quality modular and orthogonal genetic parts. Here we present a current overview of the versatile components and tools available for engineering gene circuits in microbes, including recently developed RNA-based tools that possess large dynamic ranges and can be easily programmed. We introduce design principles that enable robust and scalable circuit performance such as insulating a gene circuit against unwanted interactions with its context, and we describe efficient strategies for rapidly identifying and correcting causes of failure and fine-tuning circuit characteristics
    corecore