40,619 research outputs found

    Target-searching on the percolation

    Full text link
    We study target-searching processes on a percolation, on which a hunter tracks a target by smelling odors it emits. The odor intensity is supposed to be inversely proportional to the distance it propagates. The Monte Carlo simulation is performed on a 2-dimensional bond-percolation above the threshold. Having no idea of the location of the target, the hunter determines its moves only by random attempts in each direction. For lager percolation connectivity p≳0.90p\gtrsim 0.90, it reveals a scaling law for the searching time versus the distance to the position of the target. The scaling exponent is dependent on the sensitivity of the hunter. For smaller pp, the scaling law is broken and the probability of finding out the target significantly reduces. The hunter seems trapped in the cluster of the percolation and can hardly reach the goal.Comment: 5 figure

    Visualizing dimensionality reduction of systems biology data

    Full text link
    One of the challenges in analyzing high-dimensional expression data is the detection of important biological signals. A common approach is to apply a dimension reduction method, such as principal component analysis. Typically, after application of such a method the data is projected and visualized in the new coordinate system, using scatter plots or profile plots. These methods provide good results if the data have certain properties which become visible in the new coordinate system and which were hard to detect in the original coordinate system. Often however, the application of only one method does not suffice to capture all important signals. Therefore several methods addressing different aspects of the data need to be applied. We have developed a framework for linear and non-linear dimension reduction methods within our visual analytics pipeline SpRay. This includes measures that assist the interpretation of the factorization result. Different visualizations of these measures can be combined with functional annotations that support the interpretation of the results. We show an application to high-resolution time series microarray data in the antibiotic-producing organism Streptomyces coelicolor as well as to microarray data measuring expression of cells with normal karyotype and cells with trisomies of human chromosomes 13 and 21

    Polymer adsorption on a fractal substrate: numerical study

    Full text link
    We study the adsorption of flexible polymer macromolecules on a percolation cluster, formed by a regular two-dimensional disordered lattice at critical concentration p_c of attractive sites. The percolation cluster is characterized by a fractal dimension d_s^{p_c}=91/49. The conformational properties of polymer chains grafted to such a fractal substrate are studied by means of the pruned-enriched Rosenbluth method (PERM). We find estimates for the surface crossover exponent governing the scaling of the adsorption energy in the vicinity of the transition point, \phi_s^{p_c}=0.425\pm0.009, and for the adsorption transition temperature, T_A^{p_c}=2.64\pm0.02. As expected, the adsorption is diminished when the fractal dimension of the substrate is smaller than that of a plain Euclidean surface. The universal size and shape characteristics of a typical spatial conformation which attains a polymer chain in the adsorbed state are analyzed as well.Comment: 11 pages, 16 figure

    Dynamic Influence Networks for Rule-based Models

    Get PDF
    We introduce the Dynamic Influence Network (DIN), a novel visual analytics technique for representing and analyzing rule-based models of protein-protein interaction networks. Rule-based modeling has proved instrumental in developing biological models that are concise, comprehensible, easily extensible, and that mitigate the combinatorial complexity of multi-state and multi-component biological molecules. Our technique visualizes the dynamics of these rules as they evolve over time. Using the data produced by KaSim, an open source stochastic simulator of rule-based models written in the Kappa language, DINs provide a node-link diagram that represents the influence that each rule has on the other rules. That is, rather than representing individual biological components or types, we instead represent the rules about them (as nodes) and the current influence of these rules (as links). Using our interactive DIN-Viz software tool, researchers are able to query this dynamic network to find meaningful patterns about biological processes, and to identify salient aspects of complex rule-based models. To evaluate the effectiveness of our approach, we investigate a simulation of a circadian clock model that illustrates the oscillatory behavior of the KaiC protein phosphorylation cycle.Comment: Accepted to TVCG, in pres

    Microelectrode arrays of diamond-insulated graphitic channels for real time detection of exocytotic events from cultured chromaffin cells and slices of adrenal glands

    Get PDF
    A microstructured graphitic 4x4 multielectrode array was embedded in a single crystal diamond substrate (4x4 {uG-SCD MEA) for real-time monitoring of exocytotic events from cultured chromaffin cells and adrenal slices. The current approach relies on the development of a parallel ion beam lithographic technique, which assures the time effective fabrication of extended arrays with reproducible electrode dimensions. The reported device is suitable for performing amperometric and voltammetric recordings with high sensitivity and temporal resolution, by simultaneously acquiring data from 16 rectangularly shaped microelectrodes (20x3.5 um^2) separated by 200 um gaps. Taking advantage of the array geometry we addressed the following specific issues: i) detect both the spontaneous and KCl-evoked secretion simultaneously from several chromaffin cells directly cultured on the device surface, ii) resolve the waveform of different subsets of exocytotic events, iii) monitoring quantal secretory events from thin slices of the adrenal gland. The frequency of spontaneous release was low (0.12 Hz and 0.3 Hz respectively for adrenal slices and cultured cells) and increased up to 0.9 Hz after stimulation with 30 mM KCl in cultured cells. The spike amplitude as well as rise and decay time were comparable with those measured by carbon fiber microelectrodes and allowed to identify three different subsets of secretory events associated to "full fusion" events, "kiss and-run" and "kiss-and-stay" exocytosis, confirming that the device has adequate sensitivity and time resolution for real-time recordings. The device offers the significant advantage of shortening the time to collect data by allowing simultaneous recordings from cell populations either in primary cell cultures or in intact tissues

    A review of the biology of calcium phosphate sequestration with special reference to milk

    Get PDF
    In milk, a stable fluid is formed in which sequestered nanoclusters of calcium phosphate are substructures in casein micelles. As a result, calcium and phosphate concentrations in milk can be far in excess of their solubility. Variations of calcium, phosphate and casein concentrations in milks, both within and among species, are mainly due to the formation of the nanocluster complexes. Caseins evolved from tooth and bone proteins well before the evolution of lactation. It has therefore been suggested that the role of caseins in milk is an adaptation of an antecedent function in the control of some aspect of biomineralisation. There is new evidence that nanocluster-type complexes are also present in blood serum and, by implication, in many other closely related biofluids. Because such fluids are stable but nevertheless supersaturated with respect to the bone and tooth mineral hydroxyapatite, they allow soft and mineralised tissues to co-exist in the same organism with relative ease. An appreciable concentration of nanocluster complexes exists in fresh saliva. Such saliva may stabilise tooth mineral and help to repair demineralised lesions. In the extracellular matrix of bone, nanocluster complexes may be involved in directing the amorphous calcium phosphate to intrafibrillar spaces in collagen where they can mature into oriented apatite crystals. Thus, evidence is accumulating that calcium phosphate sequestration by phosphopeptides to form equilibrium complexes, first observed in milk, is more generally important in the control of physiological calcification
    • …
    corecore