2,243 research outputs found

    Biological inspired secure autonomous routing mechanism for wireless sensor networks

    Get PDF
    The field of wireless sensor network (WSN) is an important and challenging research area today. Advancements in sensor networks enable a wide range of environmental monitoring applications. Multihop routing in WSN is affected by new nodes constantly entering/leaving. Moreover, secure routing is a difficult problem due to the resource limitations in WSN. Thus, biological inspired algorithms are reviewed and enhanced to tackle the problems. Ant routing and human security system have shown excellent performance. Certain parameters as energy level, velocity, packet reception, dropping, mismatch rates and packet sending power are considered while making decision. The decision will come up with the optimal route and also to take best action against security attacks. In this paper, the design and initial work of BIOlogical Inspired Secure Autonomous Routing Protocol (BIOSARP) is presented. The proposed bio-inspired mechanism will meet the enhanced WSN requirements, including better delivery ratio, less energy consumption and routing overhead

    Optimization of WSN using Biological Inspired Self-Organized Secure Autonomous Routing Protocol

    Get PDF
    Since last three decade, Wireless Sensor Network is one of the biggest innovative technologies; it provides facility of heavy data traffic and management telecommunication by sensing, computation and communication into a small device. Main threat for this type of data transfer is data security in terms of maintains data integrity, high consumption of energy, end-to-end delay and high cost of nodes i.e. sensor. Handling all h issue at same time is the difficult task. SRTLD and BIOSARP are two routing protocol which helps in improving performance of the WSN. This paper is a detail description of secure architecture which is based on SRTLD and BIOSARP protocol. The main objective of this architecture is to provide high security by taking into account low energy consumption, low end-to-end delay and low node level cost. This mechanism uses concept of ACO (Ant Colony Optimization) which helps in achieving objective of the architectur

    Bio-inspired network security for 5G-enabled IoT applications

    Get PDF
    Every IPv6-enabled device connected and communicating over the Internet forms the Internet of things (IoT) that is prevalent in society and is used in daily life. This IoT platform will quickly grow to be populated with billions or more objects by making every electrical appliance, car, and even items of furniture smart and connected. The 5th generation (5G) and beyond networks will further boost these IoT systems. The massive utilization of these systems over gigabits per second generates numerous issues. Owing to the huge complexity in large-scale deployment of IoT, data privacy and security are the most prominent challenges, especially for critical applications such as Industry 4.0, e-healthcare, and military. Threat agents persistently strive to find new vulnerabilities and exploit them. Therefore, including promising security measures to support the running systems, not to harm or collapse them, is essential. Nature-inspired algorithms have the capability to provide autonomous and sustainable defense and healing mechanisms. This paper first surveys the 5G network layer security for IoT applications and lists the network layer security vulnerabilities and requirements in wireless sensor networks, IoT, and 5G-enabled IoT. Second, a detailed literature review is conducted with the current network layer security methods and the bio-inspired techniques for IoT applications exchanging data packets over 5G. Finally, the bio-inspired algorithms are analyzed in the context of providing a secure network layer for IoT applications connected over 5G and beyond networks

    Implementation of Bio Inspired Algorithm in Identification of Best Route via Ant Colony Optimization, Energy Level & Throughput with Encryption

    Get PDF
    WSN has terribly minimum life time for information Transmission. Packets drop is sometimes expected. Emmet Colony optimisation is most popular idle supported secretion worth within the network or SRTLD is employed once secretion Substance isn\'t gift supported Power, Location, and Routing & Security. we tend to additionally contemplate Node\'s turnout, price excluding energy state. We tend to write the Packets throughout Transmission for Secured Communication. DOI: 10.17762/ijritcc2321-8169.150317

    Concepts and evolution of research in the field of wireless sensor networks

    Full text link
    The field of Wireless Sensor Networks (WSNs) is experiencing a resurgence of interest and a continuous evolution in the scientific and industrial community. The use of this particular type of ad hoc network is becoming increasingly important in many contexts, regardless of geographical position and so, according to a set of possible application. WSNs offer interesting low cost and easily deployable solutions to perform a remote real time monitoring, target tracking and recognition of physical phenomenon. The uses of these sensors organized into a network continue to reveal a set of research questions according to particularities target applications. Despite difficulties introduced by sensor resources constraints, research contributions in this field are growing day by day. In this paper, we present a comprehensive review of most recent literature of WSNs and outline open research issues in this field

    A critical analysis of mobility management related issues of wireless sensor networks in cyber physical systems

    Get PDF
    Mobility management has been a long-standing issue in mobile wireless sensor networks and especially in the context of cyber physical systems; its implications are immense. This paper presents a critical analysis of the current approaches to mobility management by evaluating them against a set of criteria which are essentially inherent characteristics of such systems on which these approaches are expected to provide acceptable performance. We summarize these characteristics by using a quadruple set of metrics. Additionally, using this set we classify the various approaches to mobility management that are discussed in this paper. Finally, the paper concludes by reviewing the main findings and providing suggestions that will be helpful to guide future research efforts in the area

    A critical analysis of mobility management related issues of wireless sensor networks in cyber physical systems

    Get PDF
    Mobility management has been a long-standing issue in mobile wireless sensor networks and especially in the context of cyber physical systems its implications are immense. This paper presents a critical analysis of the current approaches to mobility management by evaluating them against a set of criteria which are essentially inherent characteristics of such systems on which these approaches are expected to provide acceptable performance. We summarize these characteristics by using a quadruple set of metrics. Additionally, using this set we classify the various approaches to mobility management that are discussed in this paper. Finally, the paper concludes by reviewing the main findings and providing suggestions that will be helpful to guide future research efforts in the area. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Muhammad Imran” is provided in this record*

    Wearable and Implantable Wireless Sensor Network Solutions for Healthcare Monitoring

    Get PDF
    Wireless sensor network (WSN) technologies are considered one of the key research areas in computer science and the healthcare application industries for improving the quality of life. The purpose of this paper is to provide a snapshot of current developments and future direction of research on wearable and implantable body area network systems for continuous monitoring of patients. This paper explains the important role of body sensor networks in medicine to minimize the need for caregivers and help the chronically ill and elderly people live an independent life, besides providing people with quality care. The paper provides several examples of state of the art technology together with the design considerations like unobtrusiveness, scalability, energy efficiency, security and also provides a comprehensive analysis of the various benefits and drawbacks of these systems. Although offering significant benefits, the field of wearable and implantable body sensor networks still faces major challenges and open research problems which are investigated and covered, along with some proposed solutions, in this paper
    • …
    corecore