173 research outputs found

    Integrating biclustering techniques with de novo gene regulatory network discovery using RNA-seq from skeletal tissues

    Get PDF
    In order to improve upon stem cell therapy for osteoarthritis, it is necessary to understand the molecular and cellular processes behind bone development and the differences from cartilage formation. To further elucidate these processes would provide a means to analyze the relatedness of bone and cartilage tissue by determining genes that are expressed and regulated for stem cells to differentiate into skeletal tissues. It would also contribute to the classification of differences in normal skeletogenesis and degenerative conditions involving these tissues. The three predominant skeletal tissues of interest are bone, immature cartilage and mature cartilage. Analysis of the transcriptome of these skeletal tissues using RNA-seq technology was performed using differential expression, clustering and biclustering algorithms, to detect similarly expressed genes, which provides evidence for genes potentially interacting together to produce a particular phenotype. Identifying key regulators in the gene regulatory networks (GRNs) driving cartilage and bone development and the differences in the GRNs they drive will facilitate a means to make comparisons between the tissues at the transcriptomic level. Due to a small number of available samples for gene expression data in bone, immature and mature cartilage, it is necessary to determine how the number of samples influences the ability to make accurate GRN predictions. Machine learning techniques for GRN prediction that can incorporate multiple data types have not been well evaluated for complex organisms, nor has RNA-seq data been used often for evaluating these methods. Therefore, techniques identified to work well with microarray data were applied to RNA-seq data from mouse embryonic stem cells, where more samples are available for evaluation compared to the skeletal tissue RNA-seq samples. The RNA-seq data was combined with ChIP-seq data to determine if the machine learning methods outperform simple, correlation-based methods that have been evaluated using RNA-seq data alone. Two of the best performing GRN prediction algorithms from previous large-scale evaluations, which are incapable of incorporating data beyond expression data, were used as a baseline to determine if the addition of multiple data types could help reduce the number of gene expression samples. It was also necessary to identify a biclustering algorithm that could identify potentially biologically relevant modules. Publicly available ChIP-seq and RNA-seq samples from embryonic stem cells were used to measure the performance and consistency of each method, as there was a well-established network in mouse embryonic stem cells to compare results. The methods were then compared to cMonkey2, a biclustering method used in conjunction with ChIP-seq for two important transcription factors in the embryonic stem cell network. This was done to determine if any of these GRN prediction methods could potentially use the small number of skeletal tissue samples available to determine transcription factors orchestrating the expression of other genes driving cartilage and bone formation. Using the embryonic stem cell RNA-seq samples, it was found that sample size, if above 10, does not have a significant impact on the number of true positives in the top predicted interactions. Random forest methods outperform correlation-based methods when using RNA-seq, with area under ROC (AUROC) for evaluation, but the number of true positive interactions predicted when compared to a literature network were similar when using a strict cut-off. Using a limited set of ChIP-seq data was found to not improve the confidence in the transcription factor interactions and had no obvious affect on biclustering results. Correlation-based methods are likely the safest option when based on consistency of the results over multiple runs, but there is still the challenge of determining an appropriate cut-off to the predictions. To predict the skeletal tissue GRNs, cMonkey was used as an initial feature selection method to identify important genes in skeletal tissues and compared with other biclustering methods that do not use ChIP-seq. The predicted skeletal tissue GRNs will be utilized in future analyses of skeletal tissues, focussing on the evolutionary relationship between the GRNs driving skeletal tissue development

    Bayesian correlated clustering to integrate multiple datasets

    Get PDF
    Motivation: The integration of multiple datasets remains a key challenge in systems biology and genomic medicine. Modern high-throughput technologies generate a broad array of different data types, providing distinct – but often complementary – information. We present a Bayesian method for the unsupervised integrative modelling of multiple datasets, which we refer to as MDI (Multiple Dataset Integration). MDI can integrate information from a wide range of different datasets and data types simultaneously (including the ability to model time series data explicitly using Gaussian processes). Each dataset is modelled using a Dirichlet-multinomial allocation (DMA) mixture model, with dependencies between these models captured via parameters that describe the agreement among the datasets. Results: Using a set of 6 artificially constructed time series datasets, we show that MDI is able to integrate a significant number of datasets simultaneously, and that it successfully captures the underlying structural similarity between the datasets. We also analyse a variety of real S. cerevisiae datasets. In the 2-dataset case, we show that MDI’s performance is comparable to the present state of the art. We then move beyond the capabilities of current approaches and integrate gene expression, ChIP-chip and protein-protein interaction data, to identify a set of protein complexes for which genes are co-regulated during the cell cycle. Comparisons to other unsupervised data integration techniques – as well as to non-integrative approaches – demonstrate that MDI is very competitive, while also providing information that would be difficult or impossible to extract using other methods

    Regulatory Snapshots: Integrative Mining of Regulatory Modules from Expression Time Series and Regulatory Networks

    Get PDF
    Explaining regulatory mechanisms is crucial to understand complex cellular responses leading to system perturbations. Some strategies reverse engineer regulatory interactions from experimental data, while others identify functional regulatory units (modules) under the assumption that biological systems yield a modular organization. Most modular studies focus on network structure and static properties, ignoring that gene regulation is largely driven by stimulus-response behavior. Expression time series are key to gain insight into dynamics, but have been insufficiently explored by current methods, which often (1) apply generic algorithms unsuited for expression analysis over time, due to inability to maintain the chronology of events or incorporate time dependency; (2) ignore local patterns, abundant in most interesting cases of transcriptional activity; (3) neglect physical binding or lack automatic association of regulators, focusing mainly on expression patterns; or (4) limit the discovery to a predefined number of modules. We propose Regulatory Snapshots, an integrative mining approach to identify regulatory modules over time by combining transcriptional control with response, while overcoming the above challenges. Temporal biclustering is first used to reveal transcriptional modules composed of genes showing coherent expression profiles over time. Personalized ranking is then applied to prioritize prominent regulators targeting the modules at each time point using a network of documented regulatory associations and the expression data. Custom graphics are finally depicted to expose the regulatory activity in a module at consecutive time points (snapshots). Regulatory Snapshots successfully unraveled modules underlying yeast response to heat shock and human epithelial-to-mesenchymal transition, based on regulations documented in the YEASTRACT and JASPAR databases, respectively, and available expression data. Regulatory players involved in functionally enriched processes related to these biological events were identified. Ranking scores further suggested ability to discern the primary role of a gene (target or regulator). Prototype is available at: http://kdbio.inesc-id.pt/software/regulatorysnapshots

    TriGen: A genetic algorithm to mine triclusters in temporal gene expression data

    Get PDF
    Analyzing microarray data represents a computational challenge due to the characteristics of these data. Clustering techniques are widely applied to create groups of genes that exhibit a similar behavior under the conditions tested. Biclustering emerges as an improvement of classical clustering since it relaxes the constraints for grouping genes to be evaluated only under a subset of the conditions and not under all of them. However, this technique is not appropriate for the analysis of longitudinal experiments in which the genes are evaluated under certain conditions at several time points. We present the TriGen algorithm, a genetic algorithm that finds triclusters of gene expression that take into account the experimental conditions and the time points simultaneously. We have used TriGen to mine datasets related to synthetic data, yeast (Saccharomyces cerevisiae) cell cycle and human inflammation and host response to injury experiments. TriGen has proved to be capable of extracting groups of genes with similar patterns in subsets of conditions and times, and these groups have shown to be related in terms of their functional annotations extracted from the Gene Ontology.Ministerio de Ciencia y Tecnología TIN2011-28956-C00Ministerio de Ciencia y Tecnología TIN2009-13950Junta de Andalucía TIC-752

    Extracting biologically significant patterns from short time series gene expression data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Time series gene expression data analysis is used widely to study the dynamics of various cell processes. Most of the time series data available today consist of few time points only, thus making the application of standard clustering techniques difficult.</p> <p>Results</p> <p>We developed two new algorithms that are capable of extracting biological patterns from short time point series gene expression data. The two algorithms, <it>ASTRO </it>and <it>MiMeSR</it>, are inspired by the <it>rank order preserving </it>framework and the <it>minimum mean squared residue </it>approach, respectively. However, <it>ASTRO </it>and <it>MiMeSR </it>differ from previous approaches in that they take advantage of the relatively few number of time points in order to reduce the problem from NP-hard to linear. Tested on well-defined short time expression data, we found that our approaches are robust to noise, as well as to random patterns, and that they can correctly detect the temporal expression profile of relevant functional categories. Evaluation of our methods was performed using Gene Ontology (GO) annotations and chromatin immunoprecipitation (ChIP-chip) data.</p> <p>Conclusion</p> <p>Our approaches generally outperform both standard clustering algorithms and algorithms designed specifically for clustering of short time series gene expression data. Both algorithms are available at <url>http://www.benoslab.pitt.edu/astro/</url>.</p

    Development of Biclustering Techniques for Gene Expression Data Modeling and Mining

    Get PDF
    The next-generation sequencing technologies can generate large-scale biological data with higher resolution, better accuracy, and lower technical variation than the arraybased counterparts. RNA sequencing (RNA-Seq) can generate genome-scale gene expression data in biological samples at a given moment, facilitating a better understanding of cell functions at genetic and cellular levels. The abundance of gene expression datasets provides an opportunity to identify genes with similar expression patterns across multiple conditions, i.e., co-expression gene modules (CEMs). Genomescale identification of CEMs can be modeled and solved by biclustering, a twodimensional data mining technique that allows clustering of rows and columns in a gene expression matrix, simultaneously. Compared with traditional clustering that targets global patterns, biclustering can predict local patterns. This unique feature makes biclustering very useful when applied to big gene expression data since genes that participate in a cellular process are only active in specific conditions, thus are usually coexpressed under a subset of all conditions. The combination of biclustering and large-scale gene expression data holds promising potential for condition-specific functional pathway/network analysis. However, existing biclustering tools do not have satisfied performance on high-resolution RNA-Seq data, majorly due to the lack of (i) a consideration of high sparsity of RNA-Seq data, especially for scRNA-Seq data, and (ii) an understanding of the underlying transcriptional regulation signals of the observed gene expression values. QUBIC2, a novel biclustering algorithm, is designed for large-scale bulk RNA-Seq and single-cell RNA-seq (scRNA-Seq) data analysis. Critical novelties of the algorithm include (i) used a truncated model to handle the unreliable quantification of genes with low or moderate expression; (ii) adopted the Gaussian mixture distribution and an information-divergency objective function to capture shared transcriptional regulation signals among a set of genes; (iii) utilized a Dual strategy to expand the core biclusters, aiming to save dropouts from the background; and (iv) developed a statistical framework to evaluate the significances of all the identified biclusters. Method validation on comprehensive data sets suggests that QUBIC2 had superior performance in functional modules detection and cell type classification. The applications of temporal and spatial data demonstrated that QUBIC2 could derive meaningful biological information from scRNA-Seq data. Also presented in this dissertation is QUBICR. This R package is characterized by an 82% average improved efficiency compared to the source C code of QUBIC. It provides a set of comprehensive functions to facilitate biclustering-based biological studies, including the discretization of expression data, query-based biclustering, bicluster expanding, biclusters comparison, heatmap visualization of any identified biclusters, and co-expression networks elucidation. In the end, a systematical summary is provided regarding the primary applications of biclustering for biological data and more advanced applications for biomedical data. It will assist researchers to effectively analyze their big data and generate valuable biological knowledge and novel insights with higher efficiency

    LSL: A new measure to evaluate triclusters

    Get PDF
    Microarray technology has led to a great advance in biological studies due to its ability to monitorize the RNA levels of a vast amount of genes under certain experimental conditions. The use of computational techniques to mine hidden knowledge from these data is of great interest in research fields such as Data Mining and Bioinformatics. Finding patterns of genetic behavior not only taking into account the experimental conditions but also the time condition is a very challenging task nowadays. Clustering, biclustering and novel triclustering techniques offer a very suitable framework to solve the suggested problem. In this work we present LSL, a measure to evaluate the quality of triclusters found in 3D data

    Gene expression data analysis using novel methods: Predicting time delayed correlations and evolutionarily conserved functional modules

    Get PDF
    Microarray technology enables the study of gene expression on a large scale. One of the main challenges has been to devise methods to cluster genes that share similar expression profiles. In gene expression time courses, a particular gene may encode transcription factor and thus controlling several genes downstream; in this case, the gene expression profiles may be staggered, indicating a time-delayed response in transcription of the later genes. The standard clustering algorithms consider gene expression profiles in a global way, thus often ignoring such local time-delayed correlations. We have developed novel methods to capture time-delayed correlations between expression profiles: (1) A method using dynamic programming and (2) CLARITY, an algorithm that uses a local shape based similarity measure to predict time-delayed correlations and local correlations. We used CLARITY on a dataset describing the change in gene expression during the mitotic cell cycle in Saccharomyces cerevisiae. The obtained clusters were significantly enriched with genes that share similar functions, reflecting the fact that genes with a similar function are often co-regulated and thus co-expressed. Time-shifted as well as local correlations could also be predicted using CLARITY. In datasets, where the expression profiles of independent experiments are compared, the standard clustering algorithms often cluster according to all conditions, considering all genes. This increases the background noise and can lead to the missing of genes that change the expression only under particular conditions. We have employed a genetic algorithm based module predictor that is capable to identify group of genes that change their expression only in a subset of conditions. With the aim of supplementing the Ustilago maydis genome annotation, we have used the module prediction algorithm on various independent datasets from Ustilago maydis. The predicted modules were cross-referenced in various Saccharomyces cerevisiae datasets to check its evolutionarily conservation between these two organisms. The key contributions of this thesis are novel methods that explore biological information from DNA microarray data

    A systematic comparison and evaluation of biclustering methods for gene expression data

    Get PDF
    Motivation: In recent years, there have been various efforts to overcome the limitations of standard clustering approaches for the analysis of gene expression data by grouping genes and samples simultaneously. The underlying concept, which is often referred to as biclustering, allows to identify sets of genes sharing compatible expression patterns across subsets of samples, and its usefulness has been demonstrated for different organisms and datasets. Several biclustering methods have been proposed in the literature; however, it is not clear how the different techniques compare with each other with respect to the biological relevance of the clusters as well as with other characteristics such as robustness and sensitivity to noise. Accordingly, no guidelines concerning the choice of the biclustering method are currently available. Results: First, this paper provides a methodology for comparing and validating biclustering methods that includes a simple binary reference model. Although this model captures the essential features of most biclustering approaches, it is still simple enough to exactly determine all optimal groupings; to this end, we propose a fast divide-and-conquer algorithm (Bimax). Second, we evaluate the performance of five salient biclustering algorithms together with the reference model and a hierarchical clustering method on various synthetic and real datasets for Saccharomyces cerevisiae and Arabidopsis thaliana. The comparison reveals that (1) biclustering in general has advantages over a conventional hierarchical clustering approach, (2) there are considerable performance differences between the tested methods and (3) already the simple reference model delivers relevant patterns within all considered settings. Availability: The datasets used, the outcomes of the biclustering algorithms and the Bimax implementation for the reference model are available at Contact: [email protected] Supplementary information: Supplementary data are available a

    Gene expression data analysis using novel methods: Predicting time delayed correlations and evolutionarily conserved functional modules

    Get PDF
    Microarray technology enables the study of gene expression on a large scale. One of the main challenges has been to devise methods to cluster genes that share similar expression profiles. In gene expression time courses, a particular gene may encode transcription factor and thus controlling several genes downstream; in this case, the gene expression profiles may be staggered, indicating a time-delayed response in transcription of the later genes. The standard clustering algorithms consider gene expression profiles in a global way, thus often ignoring such local time-delayed correlations. We have developed novel methods to capture time-delayed correlations between expression profiles: (1) A method using dynamic programming and (2) CLARITY, an algorithm that uses a local shape based similarity measure to predict time-delayed correlations and local correlations. We used CLARITY on a dataset describing the change in gene expression during the mitotic cell cycle in Saccharomyces cerevisiae. The obtained clusters were significantly enriched with genes that share similar functions, reflecting the fact that genes with a similar function are often co-regulated and thus co-expressed. Time-shifted as well as local correlations could also be predicted using CLARITY. In datasets, where the expression profiles of independent experiments are compared, the standard clustering algorithms often cluster according to all conditions, considering all genes. This increases the background noise and can lead to the missing of genes that change the expression only under particular conditions. We have employed a genetic algorithm based module predictor that is capable to identify group of genes that change their expression only in a subset of conditions. With the aim of supplementing the Ustilago maydis genome annotation, we have used the module prediction algorithm on various independent datasets from Ustilago maydis. The predicted modules were cross-referenced in various Saccharomyces cerevisiae datasets to check its evolutionarily conservation between these two organisms. The key contributions of this thesis are novel methods that explore biological information from DNA microarray data
    corecore