15,765 research outputs found

    Synthetic biology and microdevices : a powerful combination

    Get PDF
    Recent developments demonstrate that the combination of microbiology with micro-and nanoelectronics is a successful approach to develop new miniaturized sensing devices and other technologies. In the last decade, there has been a shift from the optimization of the abiotic components, for example, the chip, to the improvement of the processing capabilities of cells through genetic engineering. The synthetic biology approach will not only give rise to systems with new functionalities, but will also improve the robustness and speed of their response towards applied signals. To this end, the development of new genetic circuits has to be guided by computational design methods that enable to tune and optimize the circuit response. As the successful design of genetic circuits is highly dependent on the quality and reliability of its composing elements, intense characterization of standard biological parts will be crucial for an efficient rational design process in the development of new genetic circuits. Microengineered devices can thereby offer a new analytical approach for the study of complex biological parts and systems. By summarizing the recent techniques in creating new synthetic circuits and in integrating biology with microdevices, this review aims at emphasizing the power of combining synthetic biology with microfluidics and microelectronics

    UNCLES: Method for the identification of genes differentially consistently co-expressed in a specific subset of datasets

    Get PDF
    Background: Collective analysis of the increasingly emerging gene expression datasets are required. The recently proposed binarisation of consensus partition matrices (Bi-CoPaM) method can combine clustering results from multiple datasets to identify the subsets of genes which are consistently co-expressed in all of the provided datasets in a tuneable manner. However, results validation and parameter setting are issues that complicate the design of such methods. Moreover, although it is a common practice to test methods by application to synthetic datasets, the mathematical models used to synthesise such datasets are usually based on approximations which may not always be sufficiently representative of real datasets. Results: Here, we propose an unsupervised method for the unification of clustering results from multiple datasets using external specifications (UNCLES). This method has the ability to identify the subsets of genes consistently co-expressed in a subset of datasets while being poorly co-expressed in another subset of datasets, and to identify the subsets of genes consistently co-expressed in all given datasets. We also propose the M-N scatter plots validation technique and adopt it to set the parameters of UNCLES, such as the number of clusters, automatically. Additionally, we propose an approach for the synthesis of gene expression datasets using real data profiles in a way which combines the ground-truth-knowledge of synthetic data and the realistic expression values of real data, and therefore overcomes the problem of faithfulness of synthetic expression data modelling. By application to those datasets, we validate UNCLES while comparing it with other conventional clustering methods, and of particular relevance, biclustering methods. We further validate UNCLES by application to a set of 14 real genome-wide yeast datasets as it produces focused clusters that conform well to known biological facts. Furthermore, in-silico-based hypotheses regarding the function of a few previously unknown genes in those focused clusters are drawn. Conclusions: The UNCLES method, the M-N scatter plots technique, and the expression data synthesis approach will have wide application for the comprehensive analysis of genomic and other sources of multiple complex biological datasets. Moreover, the derived in-silico-based biological hypotheses represent subjects for future functional studies.The National Institute for Health Research (NIHR) under its Programme Grants for Applied Research Programme (Grant Reference Number RP-PG-0310-1004)

    Efficient parameter search for qualitative models of regulatory networks using symbolic model checking

    Get PDF
    Investigating the relation between the structure and behavior of complex biological networks often involves posing the following two questions: Is a hypothesized structure of a regulatory network consistent with the observed behavior? And can a proposed structure generate a desired behavior? Answering these questions presupposes that we are able to test the compatibility of network structure and behavior. We cast these questions into a parameter search problem for qualitative models of regulatory networks, in particular piecewise-affine differential equation models. We develop a method based on symbolic model checking that avoids enumerating all possible parametrizations, and show that this method performs well on real biological problems, using the IRMA synthetic network and benchmark experimental data sets. We test the consistency between the IRMA network structure and the time-series data, and search for parameter modifications that would improve the robustness of the external control of the system behavior

    Developments in the tools and methodologies of synthetic biology.

    Get PDF
    Synthetic biology is principally concerned with the rational design and engineering of biologically based parts, devices, or systems. However, biological systems are generally complex and unpredictable, and are therefore, intrinsically difficult to engineer. In order to address these fundamental challenges, synthetic biology is aiming to unify a body of knowledge from several foundational scientific fields, within the context of a set of engineering principles. This shift in perspective is enabling synthetic biologists to address complexity, such that robust biological systems can be designed, assembled, and tested as part of a biological design cycle. The design cycle takes a forward-design approach in which a biological system is specified, modeled, analyzed, assembled, and its functionality tested. At each stage of the design cycle, an expanding repertoire of tools is being developed. In this review, we highlight several of these tools in terms of their applications and benefits to the synthetic biology community

    Doctor of Philosophy

    Get PDF
    dissertationSynthetic biology is a new field in which engineers, biologists, and chemists are working together to transform genetic engineering into an advanced engineering discipline, one in which the design and construction of novel genetic circuits are made possible through the application of engineering principles. This dissertation explores two engineering strategies to address the challenges of working with genetic technology, namely the development of standards for describing genetic components and circuits at separate yet connected levels of detail and the use of Genetic Design Automation (GDA) software tools to simplify and speed up the process of optimally designing genetic circuits. Its contributions to the field of synthetic biology include (1) a proposal for the next version of the Synthetic Biology Open Language (SBOL), an existing standard for specifying and exchanging genetic designs electronically, and (2) a GDA work ow that enables users of the software tool iBioSim to create an abstract functional specication, automatically select genetic components that satisfy the specication from a design library, and compose the selected components into a standardized genetic circuit design for subsequent analysis and physical construction. Ultimately, this dissertation demonstrates how existing techniques and concepts from electrical and computer engineering can be adapted to overcome the challenges of genetic design and is an example of what is possible when working with publicly available standards for genetic design

    A modular and extensible RNA-based gene-regulatory platform for engineering cellular function

    Get PDF
    Engineered biological systems hold promise in addressing pressing human needs in chemical processing, energy production, materials construction, and maintenance and enhancement of human health and the environment. However, significant advancements in our ability to engineer biological systems have been limited by the foundational tools available for reporting on, responding to, and controlling intracellular components in living systems. Portable and scalable platforms are needed for the reliable construction of such communication and control systems across diverse organisms. We report an extensible RNA-based framework for engineering ligand-controlled gene-regulatory systems, called ribozyme switches, that exhibits tunable regulation, design modularity, and target specificity. These switch platforms contain a sensor domain, comprised of an aptamer sequence, and an actuator domain, comprised of a hammerhead ribozyme sequence. We examined two modes of standardized information transmission between these domains and demonstrate a mechanism that allows for the reliable and modular assembly of functioning synthetic RNA switches and regulation of ribozyme activity in response to various effectors. In addition to demonstrating examples of small molecule-responsive, in vivo functional, allosteric hammerhead ribozymes, this work describes a general approach for the construction of portable and scalable gene-regulatory systems. We demonstrate the versatility of the platform in implementing application-specific control systems for small molecule-mediated regulation of cell growth and noninvasive in vivo sensing of metabolite production

    Network design meets in silico evolutionary biology

    Get PDF
    Cell fate is programmed through gene regulatory networks that perform several calculations to take the appropriate decision. In silico evolutionary optimization mimics the way Nature has designed such gene regulatory networks. In this review we discuss the basic principles of these evolutionary approaches and how they can be applied to engineer synthetic networks. We summarize the basic guidelines to implement an in silico evolutionary design method, the operators for mutation and selection that iteratively drive the network architecture towards a specified dynamical behavior. Interestingly, as it happens in natural evolution, we show the existence of patterns of punctuated evolution. In addition, we highlight several examples of models that have been designed using automated procedures, together with different objective functions to select for the proper behavior. Finally, we briefly discuss the modular designability of gene regulatory networks and its potential application in biotechnology.Supported by fellowships from Generalitat Valenciana and the European Molecular Biology Organization to G. R. and by grants from the Spanish Ministerio de Ciencia e InnovaciĂłn to J.C. and S.F.E.Peer reviewe

    Tools for engineering coordinated system behaviour in synthetic microbial consortia

    Get PDF
    Advancing synthetic biology to the multicellular level requires the development of multiple cell-to-cell communication channels that propagate information with minimal signal interference. The development of quorum-sensing devices, the cornerstone technology for building microbial communities with coordinated system behaviour, has largely focused on cognate acyl-homoserine lactone (AHL)/transcription factor pairs, while the use of non-cognate pairs as a design feature has received limited attention. Here, we demonstrate a large library of AHL-receiver devices, with all cognate and non-cognate chemical signal interactions quantified, and we develop a software tool that automatically selects orthogonal communication channels. We use this approach to identify up to four orthogonal channels in silico, and experimentally demonstrate the simultaneous use of three channels in co-culture. The development of multiple non-interfering cell-to-cell communication channels is an enabling step that facilitates the design of synthetic consortia for applications including distributed bio-computation, increased bioprocess efficiency, cell specialisation and spatial organisation
    • 

    corecore