1,291 research outputs found

    Detecting driver fatigue using heart rate variability: A systematic review

    Get PDF
    Driver fatigue detection systems have potential to improve road safety by preventing crashes and saving lives. Conventional driver monitoring systems based on driving performance and facial features may be challenged by the application of automated driving systems. This limitation could potentially be overcome by monitoring systems based on physiological measurements. Heart rate variability (HRV) is a physiological marker of interest for detecting driver fatigue that can be measured during real life driving. This systematic review investigates the relationship between HRV measures and driver fatigue, as well as the performance of HRV based fatigue detection systems. With the applied eligibility criteria, 18 articles were identified in this review. Inconsistent results can be found within the studies that investigated differences of HRV measures between alert and fatigued drivers. For studies that developed HRV based fatigue detection systems, the detection performance showed a large variation, where the detection accuracy ranged from 44% to 100%. The inconsistency and variation of the results can be caused by differences in several key aspects in the study designs. Progress in this field is needed to determine the relationship between HRV and different fatigue causal factors and its connection to driver performance. To be deployed, HRV-based fatigue detection systems need to be thoroughly tested in real life conditions with good coverage of relevant driving scenarios and a sufficient number of participants

    Biorhythm-Based Awakening Timing Modulation

    Get PDF
    Abstract-The purpose of the present study is to control human biological rhythm and life cycle by optimization of awakening timing. We developed a wearable interface for controlling awakening time named "BRAC (Biological Rhythm based Awakening timing Controller)". BRAC could estimate bio-rhythm by pulse wave from finger tip and send awake signal to user. An ordinary alarm clock operates according to set times that have to be set in advance. However, humans have a rhythm in their sleep, which affects one's sleep depth and wake-up timing. We consider the simplest way to control or reset human's biorhythm or life style is to optimize the awakening timing and the sleeping hours. We examined the relationship between controlling awakening timing based on autonomous nerve rhythm and equilibrium function. Our findings suggest indicate that the prototype "BRAC" could evaluate user's biological rhythm and awakes user at the time optimized for physical function of equilibrium

    Methods for monitoring the human circadian rhythm in free-living

    Get PDF
    Our internal clock, the circadian clock, determines at which time we have our best cognitive abilities, are physically strongest, and when we are tired. Circadian clock phase is influenced primarily through exposure to light. A direct pathway from the eyes to the suprachiasmatic nucleus, where the circadian clock resides, is used to synchronise the circadian clock to external light-dark cycles. In modern society, with the ability to work anywhere at anytime and a full social agenda, many struggle to keep internal and external clocks synchronised. Living against our circadian clock makes us less efficient and poses serious health impact, especially when exercised over a long period of time, e.g. in shift workers. Assessing circadian clock phase is a cumbersome and uncomfortable task. A common method, dim light melatonin onset testing, requires a series of eight saliva samples taken in hourly intervals while the subject stays in dim light condition from 5 hours before until 2 hours past their habitual bedtime. At the same time, sensor-rich smartphones have become widely available and wearable computing is on the rise. The hypothesis of this thesis is that smartphones and wearables can be used to record sensor data to monitor human circadian rhythms in free-living. To test this hypothesis, we conducted research on specialised wearable hardware and smartphones to record relevant data, and developed algorithms to monitor circadian clock phase in free-living. We first introduce our smart eyeglasses concept, which can be personalised to the wearers head and 3D-printed. Furthermore, hardware was integrated into the eyewear to recognise typical activities of daily living (ADLs). A light sensor integrated into the eyeglasses bridge was used to detect screen use. In addition to wearables, we also investigate if sleep-wake patterns can be revealed from smartphone context information. We introduce novel methods to detect sleep opportunity, which incorporate expert knowledge to filter and fuse classifier outputs. Furthermore, we estimate light exposure from smartphone sensor and weather in- formation. We applied the Kronauer model to compare the phase shift resulting from head light measurements, wrist measurements, and smartphone estimations. We found it was possible to monitor circadian phase shift from light estimation based on smartphone sensor and weather information with a weekly error of 32±17min, which outperformed wrist measurements in 11 out of 12 participants. Sleep could be detected from smartphone use with an onset error of 40±48 min and wake error of 42±57 min. Screen use could be detected smart eyeglasses with 0.9 ROC AUC for ambient light intensities below 200lux. Nine clusters of ADLs were distinguished using Gaussian mixture models with an average accuracy of 77%. In conclusion, a combination of the proposed smartphones and smart eyeglasses applications could support users in synchronising their circadian clock to the external clocks, thus living a healthier lifestyle

    SensibleSleep: A Bayesian Model for Learning Sleep Patterns from Smartphone Events

    Get PDF
    We propose a Bayesian model for extracting sleep patterns from smartphone events. Our method is able to identify individuals' daily sleep periods and their evolution over time, and provides an estimation of the probability of sleep and wake transitions. The model is fitted to more than 400 participants from two different datasets, and we verify the results against ground truth from dedicated armband sleep trackers. We show that the model is able to produce reliable sleep estimates with an accuracy of 0.89, both at the individual and at the collective level. Moreover the Bayesian model is able to quantify uncertainty and encode prior knowledge about sleep patterns. Compared with existing smartphone-based systems, our method requires only screen on/off events, and is therefore much less intrusive in terms of privacy and more battery-efficient

    Drowsiness transitions detection using a wearable device

    Get PDF
    Due to a reduction in reaction time and, consequently, the driver’s concentration, driving when fatigued has become an issue throughout time. Consequently, the likelihood of having an accident and it being fatal increases. In this work, we aim to identify an automatic method capable of detecting drowsiness transitions by considering the time, frequency, and nonlinear domains of heart rate variability. Therefore, the methodology proposed considers the multivariate statistical process control, using principal components analysis, with accelerometer and time, frequency, and nonlinear domains of the heart rate variability extracted by a wearable device. Applying the proposed approach, it was possible to improve the results achieved in the previous studies, where it was able to remove points out-of-control due to signal noise, identify the drowsy transitions, and, consequently, improve the drowsiness classification. It is important to note that the out-of-control points of the heart rate variability are not influenced by external noise. In terms of limitations, this method was not able to detect all drowsiness transitions, and in some individuals, it falls far short of expectations. Regarding this, is essential to understand if there is any pattern or similarity among the participants in which it fails.The project is funded by the “NORTE-01-0247-FEDER-0039720”, supported by Northern Portugal Regional Operational Programme (Norte2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). It was also supported by FCT–Fundação para a CiĂȘncia e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020.The authors would like to thank everyone who participated in the driving simulations and for the conditions available at the Polytechnic Institute of CĂĄvado and Ave, 4750-810, Barcelos. This work was done in co-promotion between Optimizer-Lda, IPCA, LIACC and ISCCI

    Verification, Analytical Validation, and Clinical Validation (V3): The Foundation of Determining Fit-for-Purpose for Biometric Monitoring Technologies (BioMeTs)

    Get PDF
    Digital medicine is an interdisciplinary field, drawing together stakeholders with expertize in engineering, manufacturing, clinical science, data science, biostatistics, regulatory science, ethics, patient advocacy, and healthcare policy, to name a few. Although this diversity is undoubtedly valuable, it can lead to confusion regarding terminology and best practices. There are many instances, as we detail in this paper, where a single term is used by different groups to mean different things, as well as cases where multiple terms are used to describe essentially the same concept. Our intent is to clarify core terminology and best practices for the evaluation of Biometric Monitoring Technologies (BioMeTs), without unnecessarily introducing new terms. We focus on the evaluation of BioMeTs as fit-for-purpose for use in clinical trials. However, our intent is for this framework to be instructional to all users of digital measurement tools, regardless of setting or intended use. We propose and describe a three-component framework intended to provide a foundational evaluation framework for BioMeTs. This framework includes (1) verification, (2) analytical validation, and (3) clinical validation. We aim for this common vocabulary to enable more effective communication and collaboration, generate a common and meaningful evidence base for BioMeTs, and improve the accessibility of the digital medicine field

    The 2023 wearable photoplethysmography roadmap

    Get PDF
    Photoplethysmography is a key sensing technology which is used in wearable devices such as smartwatches and fitness trackers. Currently, photoplethysmography sensors are used to monitor physiological parameters including heart rate and heart rhythm, and to track activities like sleep and exercise. Yet, wearable photoplethysmography has potential to provide much more information on health and wellbeing, which could inform clinical decision making. This Roadmap outlines directions for research and development to realise the full potential of wearable photoplethysmography. Experts discuss key topics within the areas of sensor design, signal processing, clinical applications, and research directions. Their perspectives provide valuable guidance to researchers developing wearable photoplethysmography technology

    Free-living monitoring of Parkinson’s disease: lessons from the field

    Get PDF
    Wearable technology comprises miniaturized sensors (e.g. accelerometers) worn on the body and/or paired with mobile devices (e.g. smart phones) allowing continuous patient monitoring in unsupervised, habitual environments (termed free-living). Wearable technologies are revolutionising approaches to healthcare due to their utility, accessibility and affordability. They are positioned to transform Parkinson’s disease (PD) management through provision of individualised, comprehensive, and representative data. This is particularly relevant in PD where symptoms are often triggered by task and free-living environmental challenges that cannot be replicated with sufficient veracity elsewhere. This review concerns use of wearable technology in free-living environments for people with PD. It outlines the potential advantages of wearable technologies and evidence for these to accurately detect and measure clinically relevant features including motor symptoms, falls risk, freezing of gait, gait, functional mobility and physical activity. Technological limitations and challenges are highlighted and advances concerning broader aspects are discussed. Recommendations to overcome key challenges are made. To date there is no fully validated system to monitor clinical features or activities in free living environments. Robust accuracy and validity metrics for some features have been reported, and wearable technology may be used in these cases with a degree of confidence. Utility and acceptability appears reasonable, although testing has largely been informal. Key recommendations include adopting a multi-disciplinary approach for standardising definitions, protocols and outcomes. Robust validation of developed algorithms and sensor-based metrics is required along with testing of utility. These advances are required before widespread clinical adoption of wearable technology can be realise

    Measuring sociogenic, behavioral, and environmental impacts on circadian and rest-activity rhythms in healthy and pathological populations using actigraphy

    Get PDF
    Few biological systems are as ubiquitous as the circadian rhythm, a distributed yet inter-connected “system of systems” that coordinates the timing of physiological processes via a self-regulating, flexible network present at every level of biological organization, from cells to cities. Its functional role as the interface between time-dependent internal processes and external environmental cues exposes the circadian rhythm to disruption if these drift out of synchrony. This is especially common in industrialized human societies, where the abun-dance of resources – in combination with the fact that anthropogenic calendars have largely supplanted the sun as the primary determinant of our daily cycles of rest, activity, and sleep – disrupts the circadian rhythm’s ability to synchronize biological processes with each other and the geophysical solar day. Humans are now beholden to two increasingly disconnected clocks, and the ever-accelerating curve of human progress suggests our biological and so-cial times will only grow more disconnected. Longitudinal “out-of-clinic” monitoring is an ecologically valid alternative to well-controlled laboratory studies that can provide insight into how human circadian and behav-ioral rhythms exist in day-to-day life, and so has great potential to provide contextual data for translating chronobiological science into clinical intervention. However, methodological diversity, inconsistent terminology, insufficient reporting, and the sheer number of potential factors has slowed progress. Herein is presented scientific work focused on detecting and quantifying some of these factors, particularly “sociogenic” determinants such as the seven-day week. Through rhythmometric analysis of longitudinal in-home actigraphy, weekly be-havioral patterns were observed in both young adult males (n = 24, mean age = 23.46 years) and older adults with Parkinson’s disease (n = 13 [7 male], mean age = 60.62 years, mean Hoehn & Yahr Stage = 2.31) that evince a seven-day “circaseptan” rhythm of circadi-an and sleep disruption. This is hypothesized to be dependent upon the seven-day calendar week, particularly the regular and abrupt shifts in timing between work and rest days. These perturbations vary by chronotype in young adults, and by disease severity in Parkin-son’s disease. Collectively, these results contribute to the growing evidence that our daily rhythms are shaped by sociogenic factors in addition to well-documented environmental and biological mechanisms. Moreover, the study of these subtle infradian patterns presents serious – yet surmountable – methodological challenges that must be overcome in order to accurately monitor, quantify, analyze, report, and apply findings from observational studies of naturalistic human behavior to scientific and clinical problems
    • 

    corecore