463,022 research outputs found

    Extracting Functional Modules from Biological Pathways

    Get PDF
    It has been proposed that functional modules are the fundamental units of cellular function. Methods to identify these modules have thus far relied on gene expression data or protein-protein interaction (PPI) data, but have a few limitations. We propose a new method, using biological pathway data to identify functional modules, that can potentially overcome these limitations. We also construct a network of these modules using functionally relevant PPI data. This network displays the flow and integration of information between modules and can be used to map cellular function

    Probabilistic model checking of complex biological pathways

    Get PDF
    Probabilistic model checking is a formal verification technique that has been successfully applied to the analysis of systems from a broad range of domains, including security and communication protocols, distributed algorithms and power management. In this paper we illustrate its applicability to a complex biological system: the FGF (Fibroblast Growth Factor) signalling pathway. We give a detailed description of how this case study can be modelled in the probabilistic model checker PRISM, discussing some of the issues that arise in doing so, and show how we can thus examine a rich selection of quantitative properties of this model. We present experimental results for the case study under several different scenarios and provide a detailed analysis, illustrating how this approach can be used to yield a better understanding of the dynamics of the pathway

    WikiPathways: building research communities on biological pathways.

    Get PDF
    Here, we describe the development of WikiPathways (http://www.wikipathways.org), a public wiki for pathway curation, since it was first published in 2008. New features are discussed, as well as developments in the community of contributors. New features include a zoomable pathway viewer, support for pathway ontology annotations, the ability to mark pathways as private for a limited time and the availability of stable hyperlinks to pathways and the elements therein. WikiPathways content is freely available in a variety of formats such as the BioPAX standard, and the content is increasingly adopted by external databases and tools, including Wikipedia. A recent development is the use of WikiPathways as a staging ground for centrally curated databases such as Reactome. WikiPathways is seeing steady growth in the number of users, page views and edits for each pathway. To assess whether the community curation experiment can be considered successful, here we analyze the relation between use and contribution, which gives results in line with other wiki projects. The novel use of pathway pages as supplementary material to publications, as well as the addition of tailored content for research domains, is expected to stimulate growth further

    DNA expression microarrays may be the wrong tool to identify biological pathways

    Get PDF
    DNA microarray expression signatures are expected to provide new insights into patho- physiological pathways. Numerous variant statistical methods have been described for each step of the signal analysis. We employed five similar statistical tests on the same data set at the level of gene selection. Inter-test agreement for the identification of biological pathways in BioCarta, KEGG and Reactome was calculated using Cohen’s k- score. The identification of specific biological pathways showed only moderate agreement (0.30 < k < 0.79) between the analysis methods used. Pathways identified by microarrays must be treated cautiously as they vary according to the statistical method used

    Perturbation Detection Through Modeling of Gene Expression on a Latent Biological Pathway Network: A Bayesian hierarchical approach

    Full text link
    Cellular response to a perturbation is the result of a dynamic system of biological variables linked in a complex network. A major challenge in drug and disease studies is identifying the key factors of a biological network that are essential in determining the cell's fate. Here our goal is the identification of perturbed pathways from high-throughput gene expression data. We develop a three-level hierarchical model, where (i) the first level captures the relationship between gene expression and biological pathways using confirmatory factor analysis, (ii) the second level models the behavior within an underlying network of pathways induced by an unknown perturbation using a conditional autoregressive model, and (iii) the third level is a spike-and-slab prior on the perturbations. We then identify perturbations through posterior-based variable selection. We illustrate our approach using gene transcription drug perturbation profiles from the DREAM7 drug sensitivity predication challenge data set. Our proposed method identified regulatory pathways that are known to play a causative role and that were not readily resolved using gene set enrichment analysis or exploratory factor models. Simulation results are presented assessing the performance of this model relative to a network-free variant and its robustness to inaccuracies in biological databases

    A hidden spatial-temporal Markov random field model for network-based analysis of time course gene expression data

    Get PDF
    Microarray time course (MTC) gene expression data are commonly collected to study the dynamic nature of biological processes. One important problem is to identify genes that show different expression profiles over time and pathways that are perturbed during a given biological process. While methods are available to identify the genes with differential expression levels over time, there is a lack of methods that can incorporate the pathway information in identifying the pathways being modified/activated during a biological process. In this paper we develop a hidden spatial-temporal Markov random field (hstMRF)-based method for identifying genes and subnetworks that are related to biological processes, where the dependency of the differential expression patterns of genes on the networks are modeled over time and over the network of pathways. Simulation studies indicated that the method is quite effective in identifying genes and modified subnetworks and has higher sensitivity than the commonly used procedures that do not use the pathway structure or time dependency information, with similar false discovery rates. Application to a microarray gene expression study of systemic inflammation in humans identified a core set of genes on the KEGG pathways that show clear differential expression patterns over time. In addition, the method confirmed that the TOLL-like signaling pathway plays an important role in immune response to endotoxins.Comment: Published in at http://dx.doi.org/10.1214/07--AOAS145 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Genome-Wide Associations of Signaling Pathways in Glioblastoma Multiforme

    Get PDF
    Background: eQTL analysis is a powerful method that allows the identification of causal genomic alterations, providing an explanation of expression changes of single genes. However, genes mediate their biological roles in groups rather than in isolation, prompting us to extend the concept of eQTLs to whole gene pathways. Methods: We combined matched genomic alteration and gene expression data of glioblastoma patients and determined associations between the expression of signaling pathways and genomic copy number alterations with a non-linear machine learning approach. Results: Expectedly, over-expressed pathways were largely associated to tag-loci on chromosomes with signature alterations. Surprisingly, tag-loci that were associated to under-expressed pathways were largely placed on other chromosomes, an observation that held for composite effects between chromosomes as well. Indicating their biological relevance, identified genomic regions were highly enriched with genes having a reported driving role in gliomas. Furthermore, we found pathways that were significantly enriched with such driver genes. Conclusions: Driver genes and their associated pathways may represent a functional core that drive the tumor emergence and govern the signaling apparatus in GBMs. In addition, such associations may be indicative of drug combinations for the treatment of brain tumors that follow similar patterns of common and diverging alterations

    Alignment of Linear Biochemical Pathways Using Protein Structural Classification

    Get PDF
    Metabolic, signaling and regulatory pathways form the basis of biological processes and are important for the analysis of cellular behavior and evolution. This paper presents an approach of aligning biochemical pathways on the basis of the structure of involved proteins and their classification. The suitable information is retrieved from an integrated database system.
SIGNALIGN is available at: http://agbi.techfak.uni-bielefeld.de/signalign/index.jsp 

&#xa
    • ā€¦
    corecore