136 research outputs found

    Design, fabrication and control of soft robots

    Get PDF
    Conventionally, engineers have employed rigid materials to fabricate precise, predictable robotic systems, which are easily modelled as rigid members connected at discrete joints. Natural systems, however, often match or exceed the performance of robotic systems with deformable bodies. Cephalopods, for example, achieve amazing feats of manipulation and locomotion without a skeleton; even vertebrates such as humans achieve dynamic gaits by storing elastic energy in their compliant bones and soft tissues. Inspired by nature, engineers have begun to explore the design and control of soft-bodied robots composed of compliant materials. This Review discusses recent developments in the emerging field of soft robotics.National Science Foundation (U.S.) (Grant IIS-1226883

    Biologically Inspired Robots

    Get PDF

    E-skin: from humanoids to humans

    Get PDF
    With robots starting to enter our lives in a number of ways (e.g., social, assistive, and surgery), the electronic skin (e-skin) is becoming increasingly important. The capability of detecting subtle pressure or temperature changes makes the e-skin an essential component of a robot's body or an artificial limb [1], [2]. This is because the tactile feedback enabled by e-skin plays a fundamental role in providing action-related information such as slip during manipulation/control tasks such as grasping, and estimation of contact parameters (e.g., force, soft contact, hardness, texture, and temperature during exploration [3]). It is critical for the safe robotic interaction - albeit as a coworker in the futuristic industry 4.0 setting or to assist the elderly at home

    Study on conductive hydrogels in flexible and wearable triboelectric devices towards energy-harvesting and sensing applications (エネルギーハーベスティングおよびセンシングに向けたフレキシブルでウェアラブルな摩擦発電デバイスにおける導電性ハイドロゲルに関する研究)

    Get PDF
    信州大学(Shinshu university)博士(工学)この博士論文は、次の学術雑誌論文を一部に使用しています。 / ACS Applied Materials Interfaces 14(7) :9126-9137(2022); doi:10.1021/acsami.1c23176 / Advanced Fiber Materials 4(6) :1486-1499(2022); doi:10.1007/s42765-022-00181-4 / Chemical Engineering Journal 457 :141276(2023); doi:10.1016/j.cej.2023.141276ThesisDONG, LI. Study on conductive hydrogels in flexible and wearable triboelectric devices towards energy-harvesting and sensing applications (エネルギーハーベスティングおよびセンシングに向けたフレキシブルでウェアラブルな摩擦発電デバイスにおける導電性ハイドロゲルに関する研究). 信州大学, 2023, 博士論文. 博士(工学), 甲第802号, 令和05年03月20日授与.doctoral thesi

    Biology and bioinspiration of soft robotics : actuation, sensing, and system integration

    Get PDF
    Organisms in nature grow with senses, nervous, and actuation systems coordinated in ingenious ways to sustain metabolism and other essential life activities. The understanding of biological structures and functions guide the construction of soft robotics with unprecedented performances. However, despite the progress in soft robotics, there still remains a big gap between man-made soft robotics and natural lives in terms of autonomy, adaptability, self-repair, durability, energy efficiency, etc. Here, the actuation and sensing strategies in the natural biological world are summarized along with their man-made counterparts applied in soft robotics. The development trends of bioinspired soft robotics toward closed loop and embodiment are proposed. Challenges for obtaining autonomous soft robotics similar to natural organisms are outlined to provide a perspective in this field. [Abstract copyright: © 2021.

    Recent Advances in the Development of Biomimetic Materials

    Get PDF
    : In this review, we focused on recent efforts in the design and development of materials with biomimetic properties. Innovative methods promise to emulate cell microenvironments and tissue functions, but many aspects regarding cellular communication, motility, and responsiveness remain to be explained. We photographed the state-of-the-art advancements in biomimetics, and discussed the complexity of a "bottom-up" artificial construction of living systems, with particular highlights on hydrogels, collagen-based composites, surface modifications, and three-dimensional (3D) bioprinting applications. Fast-paced 3D printing and artificial intelligence, nevertheless, collide with reality: How difficult can it be to build reproducible biomimetic materials at a real scale in line with the complexity of living systems? Nowadays, science is in urgent need of bioengineering technologies for the practical use of bioinspired and biomimetics for medicine and clinics
    corecore