361 research outputs found

    A Bioinspired Neural Network-Based Approach for Cooperative Coverage Planning of UAVs

    Get PDF
    This paper describes a bioinspired neural-network-based approach to solve a coverage planning problem for a fleet of Unmanned Aerial Vehicles exploring critical areas. The main goal is to fully cover the map, maintaining a uniform distribution of the fleet on the map, and avoiding collisions between vehicles and other obstacles. This specific task is suitable for surveillance applications, where the uniform distribution of the fleet in the map permits them to reach any position on the map as fast as possible in emergency scenarios. To solve this problem, a bioinspired neural network structure is adopted. Specifically, the neural network consists of a grid of neurons, where each neuron has a local cost and has a local connection only with neighbor neurons. The cost of each neuron influences the cost of its neighbors, generating an attractive contribution to unvisited neurons. We introduce several controls and precautions to minimize the risk of collisions and optimize coverage planning. Then, preliminary simulations are performed in different scenarios by testing the algorithm in four maps and with fleets consisting of 3 to 10 vehicles. Results confirm the ability of the proposed approach to manage and coordinate the fleet providing the full coverage of the map in every tested scenario, avoiding collisions between vehicles, and uniformly distributing the fleet on the map

    Artificial intelligence within the interplay between natural and artificial computation:Advances in data science, trends and applications

    Get PDF
    Artificial intelligence and all its supporting tools, e.g. machine and deep learning in computational intelligence-based systems, are rebuilding our society (economy, education, life-style, etc.) and promising a new era for the social welfare state. In this paper we summarize recent advances in data science and artificial intelligence within the interplay between natural and artificial computation. A review of recent works published in the latter field and the state the art are summarized in a comprehensive and self-contained way to provide a baseline framework for the international community in artificial intelligence. Moreover, this paper aims to provide a complete analysis and some relevant discussions of the current trends and insights within several theoretical and application fields covered in the essay, from theoretical models in artificial intelligence and machine learning to the most prospective applications in robotics, neuroscience, brain computer interfaces, medicine and society, in general.BMS - Pfizer(U01 AG024904). Spanish Ministry of Science, projects: TIN2017-85827-P, RTI2018-098913-B-I00, PSI2015-65848-R, PGC2018-098813-B-C31, PGC2018-098813-B-C32, RTI2018-101114-B-I, TIN2017-90135-R, RTI2018-098743-B-I00 and RTI2018-094645-B-I00; the FPU program (FPU15/06512, FPU17/04154) and Juan de la Cierva (FJCI-2017–33022). Autonomous Government of Andalusia (Spain) projects: UMA18-FEDERJA-084. Consellería de Cultura, Educación e Ordenación Universitaria of Galicia: ED431C2017/12, accreditation 2016–2019, ED431G/08, ED431C2018/29, Comunidad de Madrid, Y2018/EMT-5062 and grant ED431F2018/02. PPMI – a public – private partnership – is funded by The Michael J. Fox Foundation for Parkinson’s Research and funding partners, including Abbott, Biogen Idec, F. Hoffman-La Roche Ltd., GE Healthcare, Genentech and Pfizer Inc

    End-to-end Reinforcement Learning for Online Coverage Path Planning in Unknown Environments

    Full text link
    Coverage path planning is the problem of finding the shortest path that covers the entire free space of a given confined area, with applications ranging from robotic lawn mowing and vacuum cleaning, to demining and search-and-rescue tasks. While offline methods can find provably complete, and in some cases optimal, paths for known environments, their value is limited in online scenarios where the environment is not known beforehand, especially in the presence of non-static obstacles. We propose an end-to-end reinforcement learning-based approach in continuous state and action space, for the online coverage path planning problem that can handle unknown environments. We construct the observation space from both global maps and local sensory inputs, allowing the agent to plan a long-term path, and simultaneously act on short-term obstacle detections. To account for large-scale environments, we propose to use a multi-scale map input representation. Furthermore, we propose a novel total variation reward term for eliminating thin strips of uncovered space in the learned path. To validate the effectiveness of our approach, we perform extensive experiments in simulation with a distance sensor, surpassing the performance of a recent reinforcement learning-based approach

    Intelligent Surveillance Robot with Obstacle Avoidance Capabilities Using Neural Network

    Get PDF
    For specific purpose, vision-based surveillance robot that can be run autonomously and able to acquire images from its dynamic environment is very important, for example, in rescuing disaster victims in Indonesia. In this paper, we propose architecture for intelligent surveillance robot that is able to avoid obstacles using 3 ultrasonic distance sensors based on backpropagation neural network and a camera for face recognition. 2.4 GHz transmitter for transmitting video is used by the operator/user to direct the robot to the desired area. Results show the effectiveness of our method and we evaluate the performance of the system

    A Perspective on Cephalopods Mimicry and Bioinspired Technologies toward Proprioceptive Autonomous Soft Robots

    Get PDF
    Octopus skin is an amazing source of inspiration for bioinspired sensors, actuators and control solutions in soft robotics. Soft organic materials, biomacromolecules and protein ingredients in octopus skin combined with a distributed intelligence, result in adaptive displays that can control emerging optical behavior, and 3D surface textures with rough geometries, with a remarkably high control speed (≈ms). To be able to replicate deformable and compliant materials capable of translating mechanical perturbations in molecular and structural chromogenic outputs, could be a glorious achievement in materials science and in the technological field. Soft robots are suitable platforms for soft multi-responsive materials, which can provide them with improved mechanical proprioception and related smarter behaviors. Indeed, a system provided with a “learning and recognition” functions, and a constitutive “mechanical” and “material intelligence” can result in an improved morphological adaptation in multi-variate environments responding to external and internal stimuli. This review aims to explore challenges and opportunities related to smart and chromogenic responsive materials for adaptive displays, reconfigurable and programmable soft skin, proprioceptive sensing system, and synthetic nervous control units for data processing, toward autonomous soft robots able to communicate and interact with users in open-world scenarios

    Biologically Inspired Robots

    Get PDF

    Design of a bioinspired cownose ray robot

    Get PDF
    corecore