1,566 research outputs found

    Hybrid biogeography-based evolutionary algorithms

    Get PDF
    Hybrid evolutionary algorithms (EAs) are effective optimization methods that combine multiple EAs. We propose several hybrid EAs by combining some recently-developed EAs with a biogeography-based hybridization strategy. We test our hybrid EAs on the continuous optimization benchmarks from the 2013 Congress on Evolutionary Computation (CEC) and on some real-world traveling salesman problems. The new hybrid EAs include two approaches to hybridization: (1) iteration-level hybridization, in which various EAs and BBO are executed in sequence; and (2) algorithm-level hybridization, which runs various EAs independently and then exchanges information between them using ideas from biogeography. Our empirical study shows that the new hybrid EAs significantly outperforms their constituent algorithms with the selected tuning parameters and generation limits, and algorithm-level hybridization is generally better than iteration-level hybridization. Results also show that the best new hybrid algorithm in this paper is competitive with the algorithms from the 2013 CEC competition. In addition, we show that the new hybrid EAs are generally robust to tuning parameters. In summary, the contribution of this paper is the introduction of biogeography-based hybridization strategies to the EA community

    Biogeography-based learning particle swarm optimization

    Get PDF

    On the equivalences and differences of evolutionary algorithms

    Get PDF
    Evolutionary algorithms (EAs) are fast and robust computation methods for global optimization, and have been widely used in many real-world applications. We first conceptually discuss the equivalences of various popular EAs including genetic algorithm (GA), biogeography-based optimization (BBO), differential evolution (DE), evolution strategy (ES) and particle swarm optimization (PSO). We find that the basic versions of BBO, DE, ES and PSO are equal to the GA with global uniform recombination (GA/GUR) under certain conditions. Then we discuss their differences based on biological motivations and implementation details, and point out that their distinctions enhance the diversity of EA research and applications. To further study the characteristics of various EAs, we compare the basic versions and advanced versions of GA, BBO, DE, ES and PSO to explore their optimization ability on a set of real-world continuous optimization problems. Empirical results show that among the basic versions of the algorithms, BBO performs best on the benchmarks that we studied. Among the advanced versions of the algorithms, DE and ES perform best on the benchmarks that we studied. However, our main conclusion is that the conceptual equivalence of the algorithms is supported by the fact that algorithmic modifications result in very different performance levels

    On the equivalences and differences of evolutionary algorithms

    Get PDF
    Evolutionary algorithms (EAs) are fast and robust computation methods for global optimization, and have been widely used in many real-world applications. We first conceptually discuss the equivalences of various popular EAs including genetic algorithm (GA), biogeography-based optimization (BBO), differential evolution (DE), evolution strategy (ES) and particle swarm optimization (PSO). We find that the basic versions of BBO, DE, ES and PSO are equal to the GA with global uniform recombination (GA/GUR) under certain conditions. Then we discuss their differences based on biological motivations and implementation details, and point out that their distinctions enhance the diversity of EA research and applications. To further study the characteristics of various EAs, we compare the basic versions and advanced versions of GA, BBO, DE, ES and PSO to explore their optimization ability on a set of real-world continuous optimization problems. Empirical results show that among the basic versions of the algorithms, BBO performs best on the benchmarks that we studied. Among the advanced versions of the algorithms, DE and ES perform best on the benchmarks that we studied. However, our main conclusion is that the conceptual equivalence of the algorithms is supported by the fact that algorithmic modifications result in very different performance levels

    Linearized biogeography-based optimization with re-initialization and local search

    Get PDF
    Biogeography-based optimization (BBO) is an evolutionary optimization algorithm that uses migration to share information among candidate solutions. One limitation of BBO is that it changes only one independent variable at a time in each candidate solution. In this paper, a linearized version of BBO, called LBBO, is proposed to reduce rotational variance. The proposed method is combined with periodic re-initialization and local search operators to obtain an algorithm for global optimization in a continuous search space. Experiments have been conducted on 45 benchmarks from the 2005 and 2011 Congress on Evolutionary Computation, and LBBO performance is compared with the results published in those conferences. The results show that LBBO provides competitive performance with state-of-the-art evolutionary algorithms. In particular, LBBO performs particularly well for certain types of multimodal problems, including high-dimensional real-world problems. Also, LBBO is insensitive to whether or not the solution lies on the search domain boundary, in a wide or narrow basin, and within or outside the initialization domain

    Biogeography-Based Optimization

    Get PDF
    Biogeography is the study of the geographical distribution of biological organisms. Mathematical equations that govern the distribution of organisms were first discovered and developed during the 1960s. The mindset of the engineer is that we can learn from nature. This motivates the application of biogeography to optimization problems. Just as the mathematics of biological genetics inspired the development of genetic algorithms (GAs), and the mathematics of biological neurons inspired the development of artificial neural networks, this paper considers the mathematics of biogeography as the basis for the development of a new field: biogeography-based optimization (BBO). We discuss natural biogeography and its mathematics, and then discuss how it can be used to solve optimization problems. We see that BBO has features in common with other biology-based optimization methods, such as GAs and particle swarm optimization (PSO). This makes BBO applicable to many of the same types of problems that GAs and PSO are used for, namely high-dimension problems with multiple local optima. However, BBO also has some features that are unique among biology-based optimization methods. We demonstrate the performance of BBO on a set of 14 standard benchmarks and compare it with seven other biology-based optimization algorithms. We also demonstrate BBO on a real-world sensor selection problem for aircraft engine health estimation

    Genomic variation in a widespread Neotropical bird (Xenops minutus) reveals divergence, population expansion, and gene flow

    Get PDF
    Elucidating the demographic and phylogeographic histories of species provides insight into the processes responsible for generating biological diversity, and genomic datasets are now permitting the estimation of histories and demographic parameters with unprecedented accuracy. We used a genomic single nucleotide polymorphism (SNP) dataset generated using a RAD-Seq method to investigate the historical demography and phylogeography of a widespread lowland Neotropical bird (Xenops minutus). As expected, we found that prominent landscape features that act as dispersal barriers, such as Amazonian rivers and the Andes Mountains, are associated with the deepest phylogeographic breaks, and also that isolation by distance is limited in areas between these barriers. In addition, we inferred positive population growth for most populations and detected evidence of historical gene flow between populations that are now physically isolated. Even with genomic estimates of historical demographic parameters, we found the prominent diversification hypotheses to be untestable. We conclude that investigations into the multifarious processes shaping species histories, aided by genomic datasets, will provide greater resolution of diversification in the Neotropics, but that future efforts should focus on understanding the processes shaping the histories of lineages rather than trying to reconcile these histories with landscape and climatic events in Earth history.Comment: 61 pages, 4 figures (+3 supplemental), 3 tables (+6 supplemental

    A Hierarchal Planning Framework for AUV Mission Management in a Spatio-Temporal Varying Ocean

    Full text link
    The purpose of this paper is to provide a hierarchical dynamic mission planning framework for a single autonomous underwater vehicle (AUV) to accomplish task-assign process in a limited time interval while operating in an uncertain undersea environment, where spatio-temporal variability of the operating field is taken into account. To this end, a high level reactive mission planner and a low level motion planning system are constructed. The high level system is responsible for task priority assignment and guiding the vehicle toward a target of interest considering on-time termination of the mission. The lower layer is in charge of generating optimal trajectories based on sequence of tasks and dynamicity of operating terrain. The mission planner is able to reactively re-arrange the tasks based on mission/terrain updates while the low level planner is capable of coping unexpected changes of the terrain by correcting the old path and re-generating a new trajectory. As a result, the vehicle is able to undertake the maximum number of tasks with certain degree of maneuverability having situational awareness of the operating field. The computational engine of the mentioned framework is based on the biogeography based optimization (BBO) algorithm that is capable of providing efficient solutions. To evaluate the performance of the proposed framework, firstly, a realistic model of undersea environment is provided based on realistic map data, and then several scenarios, treated as real experiments, are designed through the simulation study. Additionally, to show the robustness and reliability of the framework, Monte-Carlo simulation is carried out and statistical analysis is performed. The results of simulations indicate the significant potential of the two-level hierarchical mission planning system in mission success and its applicability for real-time implementation

    Biogeography and divergence times of genus Macroptilium (Leguminosae)

    Get PDF
    The biogeographic history pattern for Macroptilium, a legume genus closely related to Phaseolus, is proposed. By using ITS sequences, molecular analysis revealed that the genus has its origin on South America, with an estimate age of 2.9 to 4 My

    Variations of Biogeography-based Optimization and Markov Analysis

    Get PDF
    Biogeography-based optimization (BBO) is a new evolutionary algorithm that is inspired by biogeography. Previous work has shown that BBO is a competitive optimization algorithm, and it demonstrates good performance on various benchmark functions and real-world optimization problems. Motivated by biogeography theory and previous results, three variations of BBO migration are introduced in this paper. We refer to the original BBO algorithm as partial immigration-based BBO. The new BBO variations that we propose are called total immigration-based BBO, partial emigration-based BBO, and total emigration-based BBO. Their corresponding Markov chain models are also derived based on a previously-derived BBO Markov model. The optimization performance of these BBO variations is analyzed, and new theoretical results that are confirmed with simulation results are obtained. Theoretical results show that total emigration-based BBO and partial emigration-based BBO perform the best for three-bit unimodal problems, partial immigration-based BBO performs the best for three-bit deceptive problems, and all these BBO variations have similar results for three-bit multimodal problems. Performance comparison is further investigated on benchmark functions with a wide range of dimensions and complexities. Benchmark results show that emigration-based BBO performs the best for unimodal problems, and immigration-based BBO performs the best for multimodal problems. In addition, BBO is compared with a stud genetic algorithm (SGA), standard particle swarm optimization (SPSO 07), and adaptive differential evolution (ADE) on real-world optimization problems. The numerical results demonstrate that BBO outperforms SGA and SPSO 07, and performs similarly to ADE for the real-world problems
    corecore