13 research outputs found

    AI-Empowered Fog/Edge Resource Management for IoT Applications: A Comprehensive Review, Research Challenges and Future Perspectives

    Get PDF

    Advances and Novel Approaches in Discrete Optimization

    Get PDF
    Discrete optimization is an important area of Applied Mathematics with a broad spectrum of applications in many fields. This book results from a Special Issue in the journal Mathematics entitled ‘Advances and Novel Approaches in Discrete Optimization’. It contains 17 articles covering a broad spectrum of subjects which have been selected from 43 submitted papers after a thorough refereeing process. Among other topics, it includes seven articles dealing with scheduling problems, e.g., online scheduling, batching, dual and inverse scheduling problems, or uncertain scheduling problems. Other subjects are graphs and applications, evacuation planning, the max-cut problem, capacitated lot-sizing, and packing algorithms

    Optimizing task allocation for edge compute micro-clusters

    Get PDF
    There are over 30 billion devices at the network edge. This is largely driven by the unprecedented growth of the Internet-of-Things (IoT) and 5G technologies. These devices are being used in various applications and technologies, including but not limited to smart city systems, innovative agriculture management systems, and intelligent home systems. Deployment issues like networking and privacy problems dictate that computing should occur close to the data source at or near the network edge. Edge and fog computing are recent decentralised computing paradigms proposed to augment cloud services by extending computing and storage capabilities to the network’s edge to enable executing computational workloads locally. The benefits can help to solve issues such as reducing the strain on networking backhaul, improving network latency and enhancing application responsiveness. Many edge and fog computing deployment solutions and infrastructures are being employed to deliver cloud resources and services at the edge of the network — for example, cloudless and mobile edge computing. This thesis focuses on edge micro-cluster platforms for edge computing. Edge computing micro-cluster platforms are small, compact, and decentralised groups of interconnected computing resources located close to the edge of a network. These micro-clusters can typically comprise a variety of heterogeneous but resource-constrained computing resources, such as small compute nodes like Single Board Computers (SBCs), storage devices, and networking equipment deployed in local area networks such as smart home management. The goal of edge computing micro-clusters is to bring computation and data storage closer to IoT devices and sensors to improve the performance and reliability of distributed systems. Resource management and workload allocation represent a substantial challenge for such resource-limited and heterogeneous micro-clusters because of diversity in system architecture. Therefore, task allocation and workload management are complex problems in such micro-clusters. This thesis investigates the feasibility of edge micro-cluster platforms for edge computation. Specifically, the thesis examines the performance of micro-clusters to execute IoT applications. Furthermore, the thesis involves the evaluation of various optimisation techniques for task allocation and workload management in edge compute micro-cluster platforms. This thesis involves the application of various optimisation techniques, including simple heuristics-based optimisations, mathematical-based optimisation and metaheuristic optimisation techniques, to optimise task allocation problems in reconfigurable edge computing micro-clusters. The implementation and performance evaluations take place in a configured edge realistic environment using a constructed micro-cluster system comprised of a group of heterogeneous computing nodes and utilising a set of edge-relevant applications benchmark. The research overall characterises and demonstrates a feasible use case for micro-cluster platforms for edge computing environments and provides insight into the performance of various task allocation optimisation techniques for such micro-cluster systems

    Differential Evolution in Wireless Communications: A Review

    Get PDF
    Differential Evolution (DE) is an evolutionary computational method inspired by the biological processes of evolution and mutation. DE has been applied in numerous scientific fields. The paper presents a literature review of DE and its application in wireless communication. The detailed history, characteristics, strengths, variants and weaknesses of DE were presented. Seven broad areas were identified as different domains of application of DE in wireless communications. It was observed that coverage area maximisation and energy consumption minimisation are the two major areas where DE is applied. Others areas are quality of service, updating mechanism where candidate positions learn from a large diversified search region, security and related field applications. Problems in wireless communications are often modelled as multiobjective optimisation which can easily be tackled by the use of DE or hybrid of DE with other algorithms. Different research areas can be explored and DE will continue to be utilized in this contex

    Multi-Objective and Multi-Attribute Optimisation for Sustainable Development Decision Aiding

    Get PDF
    Optimization is considered as a decision-making process for getting the most out of available resources for the best attainable results. Many real-world problems are multi-objective or multi-attribute problems that naturally involve several competing objectives that need to be optimized simultaneously, while respecting some constraints or involving selection among feasible discrete alternatives. In this Reprint of the Special Issue, 19 research papers co-authored by 88 researchers from 14 different countries explore aspects of multi-objective or multi-attribute modeling and optimization in crisp or uncertain environments by suggesting multiple-attribute decision-making (MADM) and multi-objective decision-making (MODM) approaches. The papers elaborate upon the approaches of state-of-the-art case studies in selected areas of applications related to sustainable development decision aiding in engineering and management, including construction, transportation, infrastructure development, production, and organization management

    The 2nd International Conference on Advances in Mechanical Engineering

    Get PDF
    The Second International Conference on Advances in Mechanical Engineering, ICAME-22, was held on 25th August, 2022 at the Mechanical Engineering Department of Capital University of Science and Technology. All articles underwent a rigorous single-blind peer review process. ICAME-22 accepted papers in the disciplines of experimental and computational fluid dynamics, thermodynamics, heat Ttransfer, machine and mechanisms, design, solid mechanics, manufacturing, production and industrial engineering, engineering management, technology management, renewable energy, environmental engineering, bioengineering, materials, failure analysis, and related fields
    corecore