698 research outputs found

    RegenBase: a knowledge base of spinal cord injury biology for translational research.

    Get PDF
    Spinal cord injury (SCI) research is a data-rich field that aims to identify the biological mechanisms resulting in loss of function and mobility after SCI, as well as develop therapies that promote recovery after injury. SCI experimental methods, data and domain knowledge are locked in the largely unstructured text of scientific publications, making large scale integration with existing bioinformatics resources and subsequent analysis infeasible. The lack of standard reporting for experiment variables and results also makes experiment replicability a significant challenge. To address these challenges, we have developed RegenBase, a knowledge base of SCI biology. RegenBase integrates curated literature-sourced facts and experimental details, raw assay data profiling the effect of compounds on enzyme activity and cell growth, and structured SCI domain knowledge in the form of the first ontology for SCI, using Semantic Web representation languages and frameworks. RegenBase uses consistent identifier schemes and data representations that enable automated linking among RegenBase statements and also to other biological databases and electronic resources. By querying RegenBase, we have identified novel biological hypotheses linking the effects of perturbagens to observed behavioral outcomes after SCI. RegenBase is publicly available for browsing, querying and download.Database URL:http://regenbase.org

    BioAssay Ontology (BAO): a semantic description of bioassays and high-throughput screening results

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-throughput screening (HTS) is one of the main strategies to identify novel entry points for the development of small molecule chemical probes and drugs and is now commonly accessible to public sector research. Large amounts of data generated in HTS campaigns are submitted to public repositories such as PubChem, which is growing at an exponential rate. The diversity and quantity of available HTS assays and screening results pose enormous challenges to organizing, standardizing, integrating, and analyzing the datasets and thus to maximize the scientific and ultimately the public health impact of the huge investments made to implement public sector HTS capabilities. Novel approaches to organize, standardize and access HTS data are required to address these challenges.</p> <p>Results</p> <p>We developed the first ontology to describe HTS experiments and screening results using expressive description logic. The BioAssay Ontology (BAO) serves as a foundation for the standardization of HTS assays and data and as a semantic knowledge model. In this paper we show important examples of formalizing HTS domain knowledge and we point out the advantages of this approach. The ontology is available online at the NCBO bioportal <url>http://bioportal.bioontology.org/ontologies/44531</url>.</p> <p>Conclusions</p> <p>After a large manual curation effort, we loaded BAO-mapped data triples into a RDF database store and used a reasoner in several case studies to demonstrate the benefits of formalized domain knowledge representation in BAO. The examples illustrate semantic querying capabilities where BAO enables the retrieval of inferred search results that are relevant to a given query, but are not explicitly defined. BAO thus opens new functionality for annotating, querying, and analyzing HTS datasets and the potential for discovering new knowledge by means of inference.</p

    Representing Semantified Biological Assays in the Open Research Knowledge Graph

    Get PDF
    In the biotechnology and biomedical domains, recent text mining efforts advocate for machine-interpretable, and preferably, semantified, documentation formats of laboratory processes. This includes wet-lab protocols, (in)organic materials synthesis reactions, genetic manipulations and procedures for faster computer-mediated analysis and predictions. Herein, we present our work on the representation of semantified bioassays in the Open Research Knowledge Graph (ORKG). In particular, we describe a semantification system work-in-progress to generate, automatically and quickly, the critical semantified bioassay data mass needed to foster a consistent user audience to adopt the ORKG for recording their bioassays and facilitate the organisation of research, according to FAIR principles.Comment: In Proceedings of 'The 22nd International Conference on Asia-Pacific Digital Libraries

    Accelerating Chemical Tool Discovery by Academic Collaborative Models

    Get PDF
    The development of chemical tool compounds becomes increasingly important for chemical biology research projects in many disciplines of life sciences. In addition, they form essential parts in both academic and industrial drug discovery efforts. The required expertise and technology platforms for the identification and optimization of these potent and target-selective small molecules often exceed the capabilities of academic groups and smaller companies. Over the years, several initiatives were created all over the world which address this issue by either creating networks or consortia of academic institutes, public-private partnerships with industry, or even dedicated new research infrastructures for chemical biology. Several of these organizations and their different access models will be described. We will focus in particular on the model of EU-OPENSCREEN ERIC, a new European Research Infrastructure which was founded in 2018 and consists of more than 20 partner institutes from eight countries

    Structured Application of Biological Ontologies to Annotate High-Throughput Screening Assays and their Targets of Activity

    Get PDF
    High-throughput screening (HTS) assays have changed the pace of chemical data collection, enabling assessments at various levels of biological relevance. EPA's ToxCast Program has 328 assays (experiments) generating 541 assay components (readouts), which produces 795 assay component endpoints (analyses), with intentions to increase the number of assays and the number of substances tested. As new assays are developed, it becomes a challenge to communicate what kind of data and features are associated with each assay. This report uses the BioAssay Ontology and other publicly available ontologies to produce the ToxCast Assay Annotation, a structured resource for descriptive information that uses controlled vocabulary to aid in the communication and use of ToxCast HTS assay data. Organized by 34 annotations including 'assay design type' and 'detection technology type', this structure allows for a concise reference to the pertinent attributes of an assay. Additionally, the perspective differences between the technological and intended target are separately captured. This structured annotation also allows for the identification of comparable ToxCast assay endpoints, and offers the potential to link with other HTS data repositories.Master of Science in Public Healt

    BioAssay templates for the semantic web

    Get PDF

    The Text-mining based PubChem Bioassay neighboring analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, the number of High Throughput Screening (HTS) assays deposited in PubChem has grown quickly. As a result, the volume of both the structured information (i.e. molecular structure, bioactivities) and the unstructured information (such as descriptions of bioassay experiments), has been increasing exponentially. As a result, it has become even more demanding and challenging to efficiently assemble the bioactivity data by mining the huge amount of information to identify and interpret the relationships among the diversified bioassay experiments. In this work, we propose a text-mining based approach for bioassay neighboring analysis from the unstructured text descriptions contained in the PubChem BioAssay database.</p> <p>Results</p> <p>The neighboring analysis is achieved by evaluating the cosine scores of each bioassay pair and fraction of overlaps among the human-curated neighbors. Our results from the cosine score distribution analysis and assay neighbor clustering analysis on all PubChem bioassays suggest that strong correlations among the bioassays can be identified from their conceptual relevance. A comparison with other existing assay neighboring methods suggests that the text-mining based bioassay neighboring approach provides meaningful linkages among the PubChem bioassays, and complements the existing methods by identifying additional relationships among the bioassay entries.</p> <p>Conclusions</p> <p>The text-mining based bioassay neighboring analysis is efficient for correlating bioassays and studying different aspects of a biological process, which are otherwise difficult to achieve by existing neighboring procedures due to the lack of specific annotations and structured information. It is suggested that the text-mining based bioassay neighboring analysis can be used as a standalone or as a complementary tool for the PubChem bioassay neighboring process to enable efficient integration of assay results and generate hypotheses for the discovery of bioactivities of the tested reagents.</p

    Improving integrative searching of systems chemical biology data using semantic annotation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Systems chemical biology and chemogenomics are considered critical, integrative disciplines in modern biomedical research, but require data mining of large, integrated, heterogeneous datasets from chemistry and biology. We previously developed an RDF-based resource called Chem2Bio2RDF that enabled querying of such data using the SPARQL query language. Whilst this work has proved useful in its own right as one of the first major resources in these disciplines, its utility could be greatly improved by the application of an ontology for annotation of the nodes and edges in the RDF graph, enabling a much richer range of semantic queries to be issued.</p> <p>Results</p> <p>We developed a generalized chemogenomics and systems chemical biology OWL ontology called Chem2Bio2OWL that describes the semantics of chemical compounds, drugs, protein targets, pathways, genes, diseases and side-effects, and the relationships between them. The ontology also includes data provenance. We used it to annotate our Chem2Bio2RDF dataset, making it a rich semantic resource. Through a series of scientific case studies we demonstrate how this (i) simplifies the process of building SPARQL queries, (ii) enables useful new kinds of queries on the data and (iii) makes possible intelligent reasoning and semantic graph mining in chemogenomics and systems chemical biology.</p> <p>Availability</p> <p>Chem2Bio2OWL is available at <url>http://chem2bio2rdf.org/owl</url>. The document is available at <url>http://chem2bio2owl.wikispaces.com</url>.</p

    ChemBank: a small-molecule screening and cheminformatics resource database

    Get PDF
    ChemBank (http://chembank.broad.harvard.edu/) is a public, web-based informatics environment developed through a collaboration between the Chemical Biology Program and Platform at the Broad Institute of Harvard and MIT. This knowledge environment includes freely available data derived from small molecules and small-molecule screens and resources for studying these data. ChemBank is unique among small-molecule databases in its dedication to the storage of raw screening data, its rigorous definition of screening experiments in terms of statistical hypothesis testing, and its metadata-based organization of screening experiments into projects involving collections of related assays. ChemBank stores an increasingly varied set of measurements derived from cells and other biological assay systems treated with small molecules. Analysis tools are available and are continuously being developed that allow the relationships between small molecules, cell measurements, and cell states to be studied. Currently, ChemBank stores information on hundreds of thousands of small molecules and hundreds of biomedically relevant assays that have been performed at the Broad Institute by collaborators from the worldwide research community. The goal of ChemBank is to provide life scientists unfettered access to biomedically relevant data and tools heretofore available primarily in the private sector

    The Units Ontology: a tool for integrating units of measurement in science

    Get PDF
    Units are basic scientific tools that render meaning to numerical data. Their standardization and formalization caters for the report, exchange, process, reproducibility and integration of quantitative measurements. Ontologies are means that facilitate the integration of data and knowledge allowing interoperability and semantic information processing between diverse biomedical resources and domains. Here, we present the Units Ontology (UO), an ontology currently being used in many scientific resources for the standardized description of units of measurements
    corecore