104 research outputs found

    Avian-Inspired Claws Enable Robot Perching or Walking

    Full text link
    Multimodal UAVs (Unmanned Aerial Vehicles) are rarely capable of more than two modalities, i.e., flying and walking or flying and perching. However, being able to fly, perch, and walk could further improve their usefulness by expanding their operating envelope. For instance, an aerial robot could fly a long distance, perch in a high place to survey the surroundings, then walk to avoid obstacles that could potentially inhibit flight. Birds are capable of these three tasks, and so offer a practical example of how a robot might be developed to do the same. In this paper, we present a specialized avian-inspired claw design to enable UAVs to perch passively or walk. The key innovation is the combination of a Hoberman linkage leg with Fin Ray claw that uses the weight of the UAV to wrap the claw around a perch, or hyperextend it in the opposite direction to form a curved-up shape for stable terrestrial locomotion. Because the design uses the weight of the vehicle, the underactuated design is lightweight and low power. With the inclusion of talons, the 45g claws are capable of holding a 700g UAV to an almost 20-degree angle on a perch. In scenarios where cluttered environments impede flight and long mission times are required, such a combination of flying, perching, and walking is critical.Comment: 15 pages, 12 figure

    Enabling technologies for precise aerial manufacturing with unmanned aerial vehicles

    Get PDF
    The construction industry is currently experiencing a revolution with automation techniques such as additive manufacturing and robot-enabled construction. Additive Manufacturing (AM) is a key technology that can o er productivity improvement in the construction industry by means of o -site prefabrication and on-site construction with automated systems. The key bene t is that building elements can be fabricated with less materials and higher design freedom compared to traditional manual methods. O -site prefabrication with AM has been investigated for some time already, but it has limitations in terms of logistical issues of components transportation and due to its lack of design exibility on-site. On-site construction with automated systems, such as static gantry systems and mobile ground robots performing AM tasks, can o er additional bene ts over o -site prefabrication, but it needs further research before it will become practical and economical. Ground-based automated construction systems also have the limitation that they cannot extend the construction envelope beyond their physical size. The solution of using aerial robots to liberate the process from the constrained construction envelope has been suggested, albeit with technological challenges including precision of operation, uncertainty in environmental interaction and energy e ciency. This thesis investigates methods of precise manufacturing with aerial robots. In particular, this work focuses on stabilisation mechanisms and origami-based structural elements that allow aerial robots to operate in challenging environments. An integrated aerial self-aligning delta manipulator has been utilised to increase the positioning accuracy of the aerial robots, and a Material Extrusion (ME) process has been developed for Aerial Additive Manufacturing (AAM). A 28-layer tower has been additively manufactured by aerial robots to demonstrate the feasibility of AAM. Rotorigami and a bioinspired landing mechanism demonstrate their abilities to overcome uncertainty in environmental interaction with impact protection capabilities and improved robustness for UAV. Design principles using tensile anchoring methods have been explored, enabling low-power operation and explores possibility of low-power aerial stabilisation. The results demonstrate that precise aerial manufacturing needs to consider not only just the robotic aspects, such as ight control algorithms and mechatronics, but also material behaviour and environmental interaction as factors for its success.Open Acces

    Grasping, Perching, And Visual Servoing For Micro Aerial Vehicles

    Get PDF
    Micro Aerial Vehicles (MAVs) have seen a dramatic growth in the consumer market because of their ability to provide new vantage points for aerial photography and videography. However, there is little consideration for physical interaction with the environment surrounding them. Onboard manipulators are absent, and onboard perception, if existent, is used to avoid obstacles and maintain a minimum distance from them. There are many applications, however, which would benefit greatly from aerial manipulation or flight in close proximity to structures. This work is focused on facilitating these types of close interactions between quadrotors and surrounding objects. We first explore high-speed grasping, enabling a quadrotor to quickly grasp an object while moving at a high relative velocity. Next, we discuss planning and control strategies, empowering a quadrotor to perch on vertical surfaces using a downward-facing gripper. Then, we demonstrate that such interactions can be achieved using only onboard sensors by incorporating vision-based control and vision-based planning. In particular, we show how a quadrotor can use a single camera and an Inertial Measurement Unit (IMU) to perch on a cylinder. Finally, we generalize our approach to consider objects in motion, and we present relative pose estimation and planning, enabling tracking of a moving sphere using only an onboard camera and IMU

    Aerodynamics of a Successful Perching Maneuver

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90669/1/AIAA-2011-218-164.pd

    A 79.7g Manipulator Prototype for E-Flap Robot: A Plucking-Leaf Application

    Get PDF
    The manipulation capabilities of flapping-wing flying robots (FWFRs) is a problem barely studied. This is a direct consequence of the load-carrying capacity limitation of the flapping-wing robots. Ornithopters will improve the existent multirotor unmanned aerial vehicles (UAVs) since they could perform longer missions and offer a safe interaction in proximity to humans. This technology also opens the possibility to perch in some trees and perform tasks such as obtaining samples from nature, enabling biologists to collect samples in remote places, or assisting people in rescue missions by carrying medicines or first-aid kits. This paper presents a very lightweight manipulator (79.7g) prototype to be mounted on an ornithopter. The distribution of the mass on the flapping-wing robot is sensitive and an extra lumped mass far from the center-of-mass (CoM) of the robot deteriorates the flight stability. A configuration was proposed to avoid changing the CoM. Flight experiments show that adding the arm to the robot only moved the CoM 6mm and the performance of the flight with the manipulator has been satisfactory. Plucking leaf is chosen as an application to the designed system and several experimental tests confirmed successful sampling of leaves by the prototype

    Design, Modeling, and Control of a Flying-Insect-Inspired Quadrotor with Rotatable Arms

    Get PDF
    Aerial manipulation and delivery using quadrotors are becoming more and more popular in recent years. However, the displacement of the center of gravity (CoG) is a common issue experienced by these applications due to various eccentric payloads carried. Conventional quadrotors with eccentric payloads are usually stabilized by robust control strategies through adjusting rotation speeds of BLDC motors, which has negative effects on stability and energy efficiency of quadrotors. In this thesis, a flying-insect-inspired quadrotor with rotatable arms is proposed. With four rotatable arms, the proposed quadrotor can automatically estimate the displacement of the CoG and drive the four arms to their optimal positions during flight. In this way, the proposed quadrotor can move its symmetric center to the CoG of the quadrotor with the eccentric payload to increase its stability and energy efficiency. The design, dynamics modeling, and control strategy of the proposed quadrotor are presented in this thesis. Both calculation and experiment results show that the proposed quadrotor with rotatable arms has better flight performance of stability and energy efficiency than the conventional quadrotor with fixed arms

    Aerial Manipulation: A Literature Review

    Get PDF
    Aerial manipulation aims at combining the versatil- ity and the agility of some aerial platforms with the manipulation capabilities of robotic arms. This letter tries to collect the results reached by the research community so far within the field of aerial manipulation, especially from the technological and control point of view. A brief literature review of general aerial robotics and space manipulation is carried out as well

    Biologically inspired perching for aerial robots

    Get PDF
    2021 Spring.Includes bibliographical references.Micro Aerial Vehicles (MAVs) are widely used for various civilian and military applications (e.g., surveillance, search, and monitoring, etc.); however, one critical problem they are facing is the limited airborne time (less than one hour) due to the low aerodynamic efficiency, low energy storage capability, and high energy consumption. To address this problem, mimicking biological flyers to perch onto objects (e.g., walls, power lines, or ceilings) will significantly extend MAVs' functioning time for surveillance or monitoring related tasks. Successful perching for aerial robots, however, is quite challenging as it requires a synergistic integration of mechanical and computational intelligence. Mechanical intelligence means mechanical mechanisms to passively damp out the impact between the robot and the perching object and robustly engage the robot to the perching objects. Computational intelligence means computation algorithms to estimate, plan, and control the robot's motion so that the robot can progressively reduce its speed and adjust its orientation to perch on the objects with a desired velocity and orientation. In this research, a framework for biologically inspired perching is investigated, focusing on both computational and mechanical intelligence. Computational intelligence includes vision-based state estimation and trajectory planning. Unlike traditional flight states such as position and velocity, we leverage a biologically inspired state called time-to-contact (TTC) that represents the remaining time to the perching object at the current flight velocity. A faster and more accurate estimation method based on consecutive images is proposed to estimate TTC. Then a trajectory is planned in TTC space to realize the faster perching while satisfying multiple flight and perching constraints, e.g., maximum velocity, maximum acceleration, and desired contact velocity. For mechanical intelligence, we design, develop, and analyze a novel compliant bistable gripper with two stable states. When the gripper is open, it can close passively by the contact force between the robot and the perching object, eliminating additional actuators or sensors. We also analyze the bistability of the gripper to guide and optimize the design of the gripper. At the end, a customized MAV platform of size 250 mm is designed to combine computational and mechanical intelligence. A Raspberry Pi is used as the onboard computer to do vision-based state estimation and control. Besides, a larger gripper is designed to make the MAV perch on a horizontal rod. Perching experiments using the designed trajectories perform well at activating the bistable gripper to perch while avoiding large impact force which may damage the gripper and the MAV. The research will enable robust perching of MAVs so that they can maintain a desired observation or resting position for long-duration inspection, surveillance, search, and rescue
    corecore