79 research outputs found

    Bio-inspired network security for 5G-enabled IoT applications

    Get PDF
    Every IPv6-enabled device connected and communicating over the Internet forms the Internet of things (IoT) that is prevalent in society and is used in daily life. This IoT platform will quickly grow to be populated with billions or more objects by making every electrical appliance, car, and even items of furniture smart and connected. The 5th generation (5G) and beyond networks will further boost these IoT systems. The massive utilization of these systems over gigabits per second generates numerous issues. Owing to the huge complexity in large-scale deployment of IoT, data privacy and security are the most prominent challenges, especially for critical applications such as Industry 4.0, e-healthcare, and military. Threat agents persistently strive to find new vulnerabilities and exploit them. Therefore, including promising security measures to support the running systems, not to harm or collapse them, is essential. Nature-inspired algorithms have the capability to provide autonomous and sustainable defense and healing mechanisms. This paper first surveys the 5G network layer security for IoT applications and lists the network layer security vulnerabilities and requirements in wireless sensor networks, IoT, and 5G-enabled IoT. Second, a detailed literature review is conducted with the current network layer security methods and the bio-inspired techniques for IoT applications exchanging data packets over 5G. Finally, the bio-inspired algorithms are analyzed in the context of providing a secure network layer for IoT applications connected over 5G and beyond networks

    Joint Power and Channel Allocation for Relay-Assisted Device- to- Device Communications

    Get PDF
    Relay-assisted D2D (Device-to-Device) communication was proposed as a supplement to direct D2D communications for enhancing traffic offloading capacity in Long Term Evolution-Advanced (LTE-A) systems. In this paper, we formulate the joint power and channel allocation relay-assisted D2D communications problem aiming at maximizing the system sum rate of all cellular and D2D links while guaranteeing the minimum required SINR (Signal to Interference and Noise Ratio) of both links. As it is a MINLP (Mixed Integer Non-linear Programming), which can not be solved in polynomial time, we propose two heuristic algorithm (named Proposed HA1 and Proposed HA2) with different complexity levels to solve our design problems. Monte-Carlo simulation results show that the performances of our proposed algorithms with acceptable complexity have a good performance comparing with the optimal performance

    A Survey and Future Directions on Clustering: From WSNs to IoT and Modern Networking Paradigms

    Get PDF
    Many Internet of Things (IoT) networks are created as an overlay over traditional ad-hoc networks such as Zigbee. Moreover, IoT networks can resemble ad-hoc networks over networks that support device-to-device (D2D) communication, e.g., D2D-enabled cellular networks and WiFi-Direct. In these ad-hoc types of IoT networks, efficient topology management is a crucial requirement, and in particular in massive scale deployments. Traditionally, clustering has been recognized as a common approach for topology management in ad-hoc networks, e.g., in Wireless Sensor Networks (WSNs). Topology management in WSNs and ad-hoc IoT networks has many design commonalities as both need to transfer data to the destination hop by hop. Thus, WSN clustering techniques can presumably be applied for topology management in ad-hoc IoT networks. This requires a comprehensive study on WSN clustering techniques and investigating their applicability to ad-hoc IoT networks. In this article, we conduct a survey of this field based on the objectives for clustering, such as reducing energy consumption and load balancing, as well as the network properties relevant for efficient clustering in IoT, such as network heterogeneity and mobility. Beyond that, we investigate the advantages and challenges of clustering when IoT is integrated with modern computing and communication technologies such as Blockchain, Fog/Edge computing, and 5G. This survey provides useful insights into research on IoT clustering, allows broader understanding of its design challenges for IoT networks, and sheds light on its future applications in modern technologies integrated with IoT.acceptedVersio

    Device discovery in D2D communication: A survey

    Get PDF
    Device to Device (D2D) communication was first considered in out-band to manage energy issues in the wireless sensor networks. The primary target was to secure information about system topology for successive communication. Now the D2D communication has been legitimated in in-band by the 3rd Generation Partnership Project (3GPP). To initiate D2D communication, Device Discovery (DD) is a primary task and every D2D application benefits from DD as an end to end link maintenance and data relay when the direct path is obstructed. The DD is facing new difficulties because of the mobility of the devices over static systems, and the mobility makes it more challenging for D2D communication. For in-band D2D, DD in a single cell and multi-cell, and dense area is not legitimated properly, causing latency, inaccuracy, and energy consumption. Among extensive studies on limiting energy consumption and latency, DD is one of the essential parts concentrating on access and communication. In this paper, a comprehensive survey on DD challenges, for example single cell/multi-cell and dense area DD, energy consumption during discovery, discovery delay, and discovery security, etc., has been presented to accomplish an effective paradigm of D2D networks. In order to undertake the device (user) needs, an architecture has been projected, which promises to overwhelm the various implementation challenges of DD. The paper mainly focuses on DD taxonomy and classification with an emphasis on discovery procedures and algorithms, a summary of advances and issues, and ways for potential enhancements. For ensuring a secure DD and D2D, auspicious research directions have been proposed, based on taxonomy

    Device discovery for D2D communication in in-band cellular networks using sphere decoder like (SDL) algorithm

    Get PDF
    In the fifth generation (5G), it is anticipated that device-to-device (D2D) operation will be locally incorporated as a part without any bounds. In D2D network, multiple devices coexisting is a challenging subject of device discovery. The device discovery is performed under a visually impaired situation such as channel information, location, and the number of devices. In this paper, centralized device discovery is chosen due to power consumption and signaling overhead of the distributed system. A distinctive approach for device discovery in an in-band cellular network, based on the device’s power, is suggested with an efficient technique which enhances the implementation of D2D communication and improves the accomplishment by alleviating the discovery issues. The group of devices forms a lattice structure, and it is positioned in the coverage area. The hypersphere is constructed based on the power knowledge of a discoverer device which helps for accurate and fast device discovery in a lattice structure. Besides, sphere decoder like (SDL) algorithm is applied for quick and precise discovery in the lattice structure. Simulation results present the performance of the proposed QR factorized lattice structure scheme regarding device power, enhanced in the number of discovered devices and controlled signaling overhead

    Device-to-device based path selection for post disaster communication using hybrid intelligence

    Get PDF
    Public safety network communication methods are concurrence with emerging networks to provide enhanced strategies and services for catastrophe management. If the cellular network is damaged after a calamity, a new-generation network like the internet of things (IoT) is ready to assure network access. In this paper, we suggested a framework of hybrid intelligence to find and re-connect the isolated nodes to the functional area to save life. We look at a situation in which the devices in the hazard region can constantly monitor the radio environment to self-detect the occurrence of a disaster, switch to the device-to-device (D2D) communication mode, and establish a vital connection. The oscillating spider monkey optimization (OSMO) approach forms clusters of the devices in the disaster area to improve network efficiency. The devices in the secluded area use the cluster heads as relay nodes to the operational site. An oscillating particle swarm optimization (OPSO) with a priority-based path encoding technique is used for path discovery. The suggested approach improves the energy efficiency of the network by selecting a routing path based on the remaining energy of the device, channel quality, and hop count, thus increasing network stability and packet delivery
    • …
    corecore