6,696 research outputs found

    Frequency-splitting Dynamic MRI Reconstruction using Multi-scale 3D Convolutional Sparse Coding and Automatic Parameter Selection

    Get PDF
    Department of Computer Science and EngineeringIn this thesis, we propose a novel image reconstruction algorithm using multi-scale 3D con- volutional sparse coding and a spectral decomposition technique for highly undersampled dy- namic Magnetic Resonance Imaging (MRI) data. The proposed method recovers high-frequency information using a shared 3D convolution-based dictionary built progressively during the re- construction process in an unsupervised manner, while low-frequency information is recovered using a total variation-based energy minimization method that leverages temporal coherence in dynamic MRI. Additionally, the proposed 3D dictionary is built across three different scales to more efficiently adapt to various feature sizes, and elastic net regularization is employed to promote a better approximation to the sparse input data. Furthermore, the computational com- plexity of each component in our iterative method is analyzed. We also propose an automatic parameter selection technique based on a genetic algorithm to find optimal parameters for our numerical solver which is a variant of the alternating direction method of multipliers (ADMM). We demonstrate the performance of our method by comparing it with state-of-the-art methods on 15 single-coil cardiac, 7 single-coil DCE, and a multi-coil brain MRI datasets at different sampling rates (12.5%, 25% and 50%). The results show that our method significantly outper- forms the other state-of-the-art methods in reconstruction quality with a comparable running time and is resilient to noise.ope

    Dynamic Quantization using Spike Generation Mechanisms

    Get PDF
    This paper introduces a neuro-inspired co-ding/decoding mechanism of a constant real value by using a Spike Generation Mechanism (SGM) and a combination of two Spike Interpretation Mechanisms (SIM). One of the most efficient and widely used SGMs to encode a real value is the Leaky-Integrate and Fire (LIF) model which produces a spike train. The duration of the spike train is bounded by a given time constraint. Seeking for a simple solution of how to interpret the spike train and to reconstruct the input value, we combine two different kinds of SIMs, the time-SIM and the rate-SIM. The time-SIM allows a high quality interpretation of the neural code and the rate-SIM allows a simple decoding mechanism by couting the spikes. The resulting coding/decoding process, called the Dual-SIM Quantizer (Dual-SIMQ), is a non-uniform quantizer. It is shown that it coincides with a uniform scalar quantizer under certain assumptions. Finally, it is also shown that the time constraint can be used to control automatically the reconstruction accuracy of this time-dependent quantizer

    Approximating Human-Like Few-shot Learning with GPT-based Compression

    Full text link
    In this work, we conceptualize the learning process as information compression. We seek to equip generative pre-trained models with human-like learning capabilities that enable data compression during inference. We present a novel approach that utilizes the Generative Pre-trained Transformer (GPT) to approximate Kolmogorov complexity, with the aim of estimating the optimal Information Distance for few-shot learning. We first propose using GPT as a prior for lossless text compression, achieving a noteworthy compression ratio. Experiment with LLAMA2-7B backbone achieves a compression ratio of 15.5 on enwik9. We justify the pre-training objective of GPT models by demonstrating its equivalence to the compression length, and, consequently, its ability to approximate the information distance for texts. Leveraging the approximated information distance, our method allows the direct application of GPT models in quantitative text similarity measurements. Experiment results show that our method overall achieves superior performance compared to embedding and prompt baselines on challenging NLP tasks, including semantic similarity, zero and one-shot text classification, and zero-shot text ranking

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions
    corecore