6,684 research outputs found

    Near range path navigation using LGMD visual neural networks

    Get PDF
    In this paper, we proposed a method for near range path navigation for a mobile robot by using a pair of biologically inspired visual neural network – lobula giant movement detector (LGMD). In the proposed binocular style visual system, each LGMD processes images covering a part of the wide field of view and extracts relevant visual cues as its output. The outputs from the two LGMDs are compared and translated into executable motor commands to control the wheels of the robot in real time. Stronger signal from the LGMD in one side pushes the robot away from this side step by step; therefore, the robot can navigate in a visual environment naturally with the proposed vision system. Our experiments showed that this bio-inspired system worked well in different scenarios

    Performance optimisation of mobile robots in dynamic environments

    Get PDF
    This paper presents a robotic simulation system, that combines task allocation and motion planning of multiple mobile robots, for performance optimisation in dynamic environments. While task allocation assigns jobs to robots, motion planning generates routes for robots to execute the assigned jobs. Task allocation and motion planning together play a pivotal role in optimisation of robot team performance. These two issues become more challenging when there are often operational uncertainties in dynamic environments. We address these issues by proposing an auction-based closed-loop module for task allocation and a bio-inspired intelligent module for motion planning to optimise robot team performance in dynamic environments. The task allocation module is characterised by a closed-loop bid adjustment mechanism to improve the bid accuracy even in light of stochastic disturbances. The motion planning module is bio-inspired intelligent in that it features detection of imminent neighbours and responsiveness of virtual force navigation in dynamic traffic conditions. Simulations show that the proposed system is a practical tool to optimise the operations by a team of robots in dynamic environments. © 2012 IEEE.published_or_final_versionThe IEEE International Conference on Virtual Environments Human-Computer Interfaces and Measurement Systems (VECIMS 2012), Tianjin, China, 2-4 July 2012. In Proceedings of IEEE VECIMS, 2012, p. 54-5

    Reactive direction control for a mobile robot: A locust-like control of escape direction emerges when a bilateral pair of model locust visual neurons are integrated

    Get PDF
    Locusts possess a bilateral pair of uniquely identifiable visual neurons that respond vigorously to the image of an approaching object. These neurons are called the lobula giant movement detectors (LGMDs). The locust LGMDs have been extensively studied and this has lead to the development of an LGMD model for use as an artificial collision detector in robotic applications. To date, robots have been equipped with only a single, central artificial LGMD sensor, and this triggers a non-directional stop or rotation when a potentially colliding object is detected. Clearly, for a robot to behave autonomously, it must react differently to stimuli approaching from different directions. In this study, we implement a bilateral pair of LGMD models in Khepera robots equipped with normal and panoramic cameras. We integrate the responses of these LGMD models using methodologies inspired by research on escape direction control in cockroaches. Using ‘randomised winner-take-all’ or ‘steering wheel’ algorithms for LGMD model integration, the khepera robots could escape an approaching threat in real time and with a similar distribution of escape directions as real locusts. We also found that by optimising these algorithms, we could use them to integrate the left and right DCMD responses of real jumping locusts offline and reproduce the actual escape directions that the locusts took in a particular trial. Our results significantly advance the development of an artificial collision detection and evasion system based on the locust LGMD by allowing it reactive control over robot behaviour. The success of this approach may also indicate some important areas to be pursued in future biological research

    A short curriculum of the robotics and technology of computer lab

    Get PDF
    Our research Lab is directed by Prof. Anton Civit. It is an interdisciplinary group of 23 researchers that carry out their teaching and researching labor at the Escuela PolitĂ©cnica Superior (Higher Polytechnic School) and the Escuela de IngenierĂ­a InformĂĄtica (Computer Engineering School). The main research fields are: a) Industrial and mobile Robotics, b) Neuro-inspired processing using electronic spikes, c) Embedded and real-time systems, d) Parallel and massive processing computer architecture, d) Information Technologies for rehabilitation, handicapped and elder people, e) Web accessibility and usability In this paper, the Lab history is presented and its main publications and research projects over the last few years are summarized.Nuestro grupo de investigaciĂłn estĂĄ liderado por el profesor Civit. Somos un grupo multidisciplinar de 23 investigadores que realizan su labor docente e investigadora en la Escuela PolitĂ©cnica Superior y en Escuela de IngenierĂ­a InformĂĄtica. Las principales lĂ­neas de investigaciones son: a) RobĂłtica industrial y mĂłvil. b) Procesamiento neuro-inspirado basado en pulsos electrĂłnicos. c) Sistemas empotrados y de tiempo real. d) Arquitecturas paralelas y de procesamiento masivo. e) TecnologĂ­a de la informaciĂłn aplicada a la discapacidad, rehabilitaciĂłn y a las personas mayores. f) Usabilidad y accesibilidad Web. En este artĂ­culo se reseña la historia del grupo y se resumen las principales publicaciones y proyectos que ha conseguido en los Ășltimos años

    Towards Odor-Sensitive Mobile Robots

    Get PDF
    J. Monroy, J. Gonzalez-Jimenez, "Towards Odor-Sensitive Mobile Robots", Electronic Nose Technologies and Advances in Machine Olfaction, IGI Global, pp. 244--263, 2018, doi:10.4018/978-1-5225-3862-2.ch012 VersiĂłn preprint, con permiso del editorOut of all the components of a mobile robot, its sensorial system is undoubtedly among the most critical ones when operating in real environments. Until now, these sensorial systems mostly relied on range sensors (laser scanner, sonar, active triangulation) and cameras. While electronic noses have barely been employed, they can provide a complementary sensory information, vital for some applications, as with humans. This chapter analyzes the motivation of providing a robot with gas-sensing capabilities and also reviews some of the hurdles that are preventing smell from achieving the importance of other sensing modalities in robotics. The achievements made so far are reviewed to illustrate the current status on the three main fields within robotics olfaction: the classification of volatile substances, the spatial estimation of the gas dispersion from sparse measurements, and the localization of the gas source within a known environment

    Development of a bio-inspired vision system for mobile micro-robots

    Get PDF
    In this paper, we present a new bio-inspired vision system for mobile micro-robots. The processing method takes inspiration from vision of locusts in detecting the fast approaching objects. Research suggested that locusts use wide field visual neuron called the lobula giant movement detector to respond to imminent collisions. We employed the locusts' vision mechanism to motion control of a mobile robot. The selected image processing method is implemented on a developed extension module using a low-cost and fast ARM processor. The vision module is placed on top of a micro-robot to control its trajectory and to avoid obstacles. The observed results from several performed experiments demonstrated that the developed extension module and the inspired vision system are feasible to employ as a vision module for obstacle avoidance and motion control

    Towards an Autonomous Walking Robot for Planetary Surfaces

    Get PDF
    In this paper, recent progress in the development of the DLR Crawler - a six-legged, actively compliant walking robot prototype - is presented. The robot implements a walking layer with a simple tripod and a more complex biologically inspired gait. Using a variety of proprioceptive sensors, different reflexes for reactively crossing obstacles within the walking height are realised. On top of the walking layer, a navigation layer provides the ability to autonomously navigate to a predefined goal point in unknown rough terrain using a stereo camera. A model of the environment is created, the terrain traversability is estimated and an optimal path is planned. The difficulty of the path can be influenced by behavioral parameters. Motion commands are sent to the walking layer and the gait pattern is switched according to the estimated terrain difficulty. The interaction between walking layer and navigation layer was tested in different experimental setups
    • 

    corecore