123 research outputs found

    Bio-Inspired Multi-Layer Spiking Neural Network Extracts Discriminative Features from Speech Signals

    Full text link
    Spiking neural networks (SNNs) enable power-efficient implementations due to their sparse, spike-based coding scheme. This paper develops a bio-inspired SNN that uses unsupervised learning to extract discriminative features from speech signals, which can subsequently be used in a classifier. The architecture consists of a spiking convolutional/pooling layer followed by a fully connected spiking layer for feature discovery. The convolutional layer of leaky, integrate-and-fire (LIF) neurons represents primary acoustic features. The fully connected layer is equipped with a probabilistic spike-timing-dependent plasticity learning rule. This layer represents the discriminative features through probabilistic, LIF neurons. To assess the discriminative power of the learned features, they are used in a hidden Markov model (HMM) for spoken digit recognition. The experimental results show performance above 96% that compares favorably with popular statistical feature extraction methods. Our results provide a novel demonstration of unsupervised feature acquisition in an SNN

    An Efficient Threshold-Driven Aggregate-Label Learning Algorithm for Multimodal Information Processing

    Get PDF
    The aggregate-label learning paradigm tackles the long-standing temporary credit assignment (TCA) problem in neuroscience and machine learning, enabling spiking neural networks to learn multimodal sensory clues with delayed feedback signals. However, the existing aggregate-label learning algorithms only work for single spiking neurons, and with low learning efficiency, which limit their real-world applicability. To address these limitations, we first propose an efficient threshold-driven plasticity algorithm for spiking neurons, namely ETDP. It enables spiking neurons to generate the desired number of spikes that match the magnitude of delayed feedback signals and to learn useful multimodal sensory clues embedded within spontaneous spiking activities. Furthermore, we extend the ETDP algorithm to support multi-layer spiking neural networks (SNNs), which significantly improves the applicability of aggregate-label learning algorithms. We also validate the multi-layer ETDP learning algorithm in a multimodal computation framework for audio-visual pattern recognition. Experimental results on both synthetic and realistic datasets show significant improvements in the learning efficiency and model capacity over the existing aggregate-label learning algorithms. It, therefore, provides many opportunities for solving real-world multimodal pattern recognition tasks with spiking neural networks

    Using K-fold cross validation proposed models for SpikeProp learning enhancements

    Get PDF
    Spiking Neural Network (SNN) uses individual spikes in time field to perform as well as to communicate computation in such a way as the actual neurons act. SNN was not studied earlier as it was considered too complicated and too hard to examine. Several limitations concerning the characteristics of SNN which were not researched earlier are now resolved since the introduction of SpikeProp in 2000 by Sander Bothe as a supervised SNN learning model. This paper defines the research developments of the enhancement Spikeprop learning using K-fold cross validation for datasets classification. Hence, this paper introduces acceleration factors of SpikeProp using Radius Initial Weight and Differential Evolution (DE) Initialization weights as proposed methods. In addition, training and testing using K-fold cross validation properties of the new proposed method were investigated using datasets obtained from Machine Learning Benchmark Repository as an improved Bohte's algorithm. A comparison of the performance was made between the proposed method and Backpropagation (BP) together with the Standard SpikeProp. The findings also reveal that the proposed method has better performance when compared to Standard SpikeProp as well as the BP for all datasets performed by K-fold cross validation for classification datasets

    PC-SNN: Supervised Learning with Local Hebbian Synaptic Plasticity based on Predictive Coding in Spiking Neural Networks

    Full text link
    Deemed as the third generation of neural networks, the event-driven Spiking Neural Networks(SNNs) combined with bio-plausible local learning rules make it promising to build low-power, neuromorphic hardware for SNNs. However, because of the non-linearity and discrete property of spiking neural networks, the training of SNN remains difficult and is still under discussion. Originating from gradient descent, backprop has achieved stunning success in multi-layer SNNs. Nevertheless, it is assumed to lack biological plausibility, while consuming relatively high computational resources. In this paper, we propose a novel learning algorithm inspired by predictive coding theory and show that it can perform supervised learning fully autonomously and successfully as the backprop, utilizing only local Hebbian plasticity. Furthermore, this method achieves a favorable performance compared to the state-of-the-art multi-layer SNNs: test accuracy of 99.25% for the Caltech Face/Motorbike dataset, 84.25% for the ETH-80 dataset, 98.1% for the MNIST dataset and 98.5% for the neuromorphic dataset: N-MNIST. Furthermore, our work provides a new perspective on how supervised learning algorithms are directly implemented in spiking neural circuitry, which may give some new insights into neuromorphological calculation in neuroscience.Comment: 15 pages, 11fig

    Bio-inspired multisensory integration of social signals

    Get PDF
    Emotions understanding represents a core aspect of human communication. Our social behaviours are closely linked to expressing our emotions and understanding others’ emotional and mental states through social signals. Emotions are expressed in a multisensory manner, where humans use social signals from different sensory modalities such as facial expression, vocal changes, or body language. The human brain integrates all relevant information to create a new multisensory percept and derives emotional meaning. There exists a great interest for emotions recognition in various fields such as HCI, gaming, marketing, and assistive technologies. This demand is driving an increase in research on multisensory emotion recognition. The majority of existing work proceeds by extracting meaningful features from each modality and applying fusion techniques either at a feature level or decision level. However, these techniques are ineffective in translating the constant talk and feedback between different modalities. Such constant talk is particularly crucial in continuous emotion recognition, where one modality can predict, enhance and complete the other. This thesis proposes novel architectures for multisensory emotions recognition inspired by multisensory integration in the brain. First, we explore the use of bio-inspired unsupervised learning for unisensory emotion recognition for audio and visual modalities. Then we propose three multisensory integration models, based on different pathways for multisensory integration in the brain; that is, integration by convergence, early cross-modal enhancement, and integration through neural synchrony. The proposed models are designed and implemented using third generation neural networks, Spiking Neural Networks (SNN) with unsupervised learning. The models are evaluated using widely adopted, third-party datasets and compared to state-of-the-art multimodal fusion techniques, such as early, late and deep learning fusion. Evaluation results show that the three proposed models achieve comparable results to state-of-the-art supervised learning techniques. More importantly, this thesis shows models that can translate a constant talk between modalities during the training phase. Each modality can predict, complement and enhance the other using constant feedback. The cross-talk between modalities adds an insight into emotions compared to traditional fusion techniques
    • …
    corecore