9,232 research outputs found

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world

    Event Guided Depth Sensing

    Full text link
    Active depth sensors like structured light, lidar, and time-of-flight systems sample the depth of the entire scene uniformly at a fixed scan rate. This leads to limited spatiotemporal resolution where redundant static information is over-sampled and precious motion information might be under-sampled. In this paper, we present an efficient bio-inspired event-camera-driven depth estimation algorithm. In our approach, we dynamically illuminate areas of interest densely, depending on the scene activity detected by the event camera, and sparsely illuminate areas in the field of view with no motion. The depth estimation is achieved by an event-based structured light system consisting of a laser point projector coupled with a second event-based sensor tuned to detect the reflection of the laser from the scene. We show the feasibility of our approach in a simulated autonomous driving scenario and real indoor sequences using our prototype. We show that, in natural scenes like autonomous driving and indoor environments, moving edges correspond to less than 10% of the scene on average. Thus our setup requires the sensor to scan only 10% of the scene, which could lead to almost 90% less power consumption by the illumination source. While we present the evaluation and proof-of-concept for an event-based structured-light system, the ideas presented here are applicable for a wide range of depth sensing modalities like LIDAR, time-of-flight, and standard stereo

    Event Guided Depth Sensing

    Full text link
    Active depth sensors like structured light, lidar, and time-of-flight systems sample the depth of the entire scene uniformly at a fixed scan rate. This leads to limited spatiotemporal resolution where redundant static information is over-sampled and precious motion information might be under-sampled. In this paper, we present an efficient bio-inspired event-camera-driven depth estimation algorithm. In our approach, we dynamically illuminate areas of interest densely, depending on the scene activity detected by the event camera, and sparsely illuminate areas in the field of view with no motion. The depth estimation is achieved by an event-based structured light system consisting of a laser point projector coupled with a second event-based sensor tuned to detect the reflection of the laser from the scene. We show the feasibility of our approach in a simulated autonomous driving scenario and real indoor sequences using our prototype. We show that, in natural scenes like autonomous driving and indoor environments, moving edges correspond to less than 10% of the scene on average. Thus our setup requires the sensor to scan only 10% of the scene, which could lead to almost 90% less power consumption by the illumination source. While we present the evaluation and proof-of-concept for an event-based structured-light system, the ideas presented here are applicable for a wide range of depth sensing modalities like LIDAR, time-of-flight, and standard stereo

    Bio-Inspired Stereo Vision Calibration for Dynamic Vision Sensors

    Get PDF
    Many advances have been made in the eld of computer vision. Several recent research trends have focused on mimicking human vision by using a stereo vision system. In multi-camera systems, a calibration process is usually implemented to improve the results accuracy. However, these systems generate a large amount of data to be processed; therefore, a powerful computer is required and, in many cases, this cannot be done in real time. Neuromorphic Engineering attempts to create bio-inspired systems that mimic the information processing that takes place in the human brain. This information is encoded using pulses (or spikes) and the generated systems are much simpler (in computational operations and resources), which allows them to perform similar tasks with much lower power consumption, thus these processes can be developed over specialized hardware with real-time processing. In this work, a bio-inspired stereovision system is presented, where a calibration mechanism for this system is implemented and evaluated using several tests. The result is a novel calibration technique for a neuromorphic stereo vision system, implemented over specialized hardware (FPGA - Field-Programmable Gate Array), which allows obtaining reduced latencies on hardware implementation for stand-alone systems, and working in real time.Ministerio de EconomĂ­a y Competitividad TEC2016-77785-PMinisterio de EconomĂ­a y Competitividad TIN2016-80644-

    Event-based Vision meets Deep Learning on Steering Prediction for Self-driving Cars

    Full text link
    Event cameras are bio-inspired vision sensors that naturally capture the dynamics of a scene, filtering out redundant information. This paper presents a deep neural network approach that unlocks the potential of event cameras on a challenging motion-estimation task: prediction of a vehicle's steering angle. To make the best out of this sensor-algorithm combination, we adapt state-of-the-art convolutional architectures to the output of event sensors and extensively evaluate the performance of our approach on a publicly available large scale event-camera dataset (~1000 km). We present qualitative and quantitative explanations of why event cameras allow robust steering prediction even in cases where traditional cameras fail, e.g. challenging illumination conditions and fast motion. Finally, we demonstrate the advantages of leveraging transfer learning from traditional to event-based vision, and show that our approach outperforms state-of-the-art algorithms based on standard cameras.Comment: 9 pages, 8 figures, 6 tables. Video: https://youtu.be/_r_bsjkJTH

    Block-Matching Optical Flow for Dynamic Vision Sensor- Algorithm and FPGA Implementation

    Full text link
    Rapid and low power computation of optical flow (OF) is potentially useful in robotics. The dynamic vision sensor (DVS) event camera produces quick and sparse output, and has high dynamic range, but conventional OF algorithms are frame-based and cannot be directly used with event-based cameras. Previous DVS OF methods do not work well with dense textured input and are designed for implementation in logic circuits. This paper proposes a new block-matching based DVS OF algorithm which is inspired by motion estimation methods used for MPEG video compression. The algorithm was implemented both in software and on FPGA. For each event, it computes the motion direction as one of 9 directions. The speed of the motion is set by the sample interval. Results show that the Average Angular Error can be improved by 30\% compared with previous methods. The OF can be calculated on FPGA with 50\,MHz clock in 0.2\,us per event (11 clock cycles), 20 times faster than a Java software implementation running on a desktop PC. Sample data is shown that the method works on scenes dominated by edges, sparse features, and dense texture.Comment: Published in ISCAS 201
    • 

    corecore