229 research outputs found

    Five day attachment ECG electrodes for longitudinal bio-sensing using conformal tattoo substrates

    Get PDF
    State-of-the-art ECG (electrocardiography) uses wet Silver/Silver-Chloride (Ag/AgCl) electrodes where a conductive gel is used to provide a esistive, low impedance, connection to the skin. These electrodes are very easy to apply, but have a significant number of limitations for personalized and preventative healthcare. In particular that the gel dries out giving a limited connection time. This paper presents ECG electrodes manufactured using the inkjet printing of Silver nanoparticles onto a conformal tattoo substrate. The substrate maintains a high quality connection to the body for many days at a time allowing ECG monitoring over periods not previously possible without electrode re-attachment. The design and manufacture of the conformal electrodes is presented, together with detailed characterization of the electrode performance in terms of the Signal to Noise Ratio and baseline wander. The Signal to Noise Ratio is shown to still be over 30 dB five days after the initial electrode attachment

    From wearable towards epidermal computing : soft wearable devices for rich interaction on the skin

    Get PDF
    Human skin provides a large, always available, and easy to access real-estate for interaction. Recent advances in new materials, electronics, and human-computer interaction have led to the emergence of electronic devices that reside directly on the user's skin. These conformal devices, referred to as Epidermal Devices, have mechanical properties compatible with human skin: they are very thin, often thinner than human hair; they elastically deform when the body is moving, and stretch with the user's skin. Firstly, this thesis provides a conceptual understanding of Epidermal Devices in the HCI literature. We compare and contrast them with other technical approaches that enable novel on-skin interactions. Then, through a multi-disciplinary analysis of Epidermal Devices, we identify the design goals and challenges that need to be addressed for advancing this emerging research area in HCI. Following this, our fundamental empirical research investigated how epidermal devices of different rigidity levels affect passive and active tactile perception. Generally, a correlation was found between the device rigidity and tactile sensitivity thresholds as well as roughness discrimination ability. Based on these findings, we derive design recommendations for realizing epidermal devices. Secondly, this thesis contributes novel Epidermal Devices that enable rich on-body interaction. SkinMarks contributes to the fabrication and design of novel Epidermal Devices that are highly skin-conformal and enable touch, squeeze, and bend sensing with co-located visual output. These devices can be deployed on highly challenging body locations, enabling novel interaction techniques and expanding the design space of on-body interaction. Multi-Touch Skin enables high-resolution multi-touch input on the body. We present the first non-rectangular and high-resolution multi-touch sensor overlays for use on skin and introduce a design tool that generates such sensors in custom shapes and sizes. Empirical results from two technical evaluations confirm that the sensor achieves a high signal-to-noise ratio on the body under various grounding conditions and has a high spatial accuracy even when subjected to strong deformations. Thirdly, Epidermal Devices are in contact with the skin, they offer opportunities for sensing rich physiological signals from the body. To leverage this unique property, this thesis presents rapid fabrication and computational design techniques for realizing Multi-Modal Epidermal Devices that can measure multiple physiological signals from the human body. Devices fabricated through these techniques can measure ECG (Electrocardiogram), EMG (Electromyogram), and EDA (Electro-Dermal Activity). We also contribute a computational design and optimization method based on underlying human anatomical models to create optimized device designs that provide an optimal trade-off between physiological signal acquisition capability and device size. The graphical tool allows for easily specifying design preferences and to visually analyze the generated designs in real-time, enabling designer-in-the-loop optimization. Experimental results show high quantitative agreement between the prediction of the optimizer and experimentally collected physiological data. Finally, taking a multi-disciplinary perspective, we outline the roadmap for future research in this area by highlighting the next important steps, opportunities, and challenges. Taken together, this thesis contributes towards a holistic understanding of Epidermal Devices}: it provides an empirical and conceptual understanding as well as technical insights through contributions in DIY (Do-It-Yourself), rapid fabrication, and computational design techniques.Die menschliche Haut bietet eine große, stets verfügbare und leicht zugängliche Fläche für Interaktion. Jüngste Fortschritte in den Bereichen Materialwissenschaft, Elektronik und Mensch-Computer-Interaktion (Human-Computer-Interaction, HCI) [so that you can later use the Englisch abbreviation] haben zur Entwicklung elektronischer Geräte geführt, die sich direkt auf der Haut des Benutzers befinden. Diese sogenannten Epidermisgeräte haben mechanische Eigenschaften, die mit der menschlichen Haut kompatibel sind: Sie sind sehr dünn, oft dünner als ein menschliches Haar; sie verformen sich elastisch, wenn sich der Körper bewegt, und dehnen sich mit der Haut des Benutzers. Diese Thesis bietet, erstens, ein konzeptionelles Verständnis von Epidermisgeräten in der HCI-Literatur. Wir vergleichen sie mit anderen technischen Ansätzen, die neuartige Interaktionen auf der Haut ermöglichen. Dann identifizieren wir durch eine multidisziplinäre Analyse von Epidermisgeräten die Designziele und Herausforderungen, die angegangen werden müssen, um diesen aufstrebenden Forschungsbereich voranzubringen. Im Anschluss daran untersuchten wir in unserer empirischen Grundlagenforschung, wie epidermale Geräte unterschiedlicher Steifigkeit die passive und aktive taktile Wahrnehmung beeinflussen. Im Allgemeinen wurde eine Korrelation zwischen der Steifigkeit des Geräts und den taktilen Empfindlichkeitsschwellen sowie der Fähigkeit zur Rauheitsunterscheidung festgestellt. Basierend auf diesen Ergebnissen leiten wir Designempfehlungen für die Realisierung epidermaler Geräte ab. Zweitens trägt diese Thesis zu neuartigen Epidermisgeräten bei, die eine reichhaltige Interaktion am Körper ermöglichen. SkinMarks trägt zur Herstellung und zum Design neuartiger Epidermisgeräte bei, die hochgradig an die Haut angepasst sind und Berührungs-, Quetsch- und Biegesensoren mit gleichzeitiger visueller Ausgabe ermöglichen. Diese Geräte können an sehr schwierigen Körperstellen eingesetzt werden, ermöglichen neuartige Interaktionstechniken und erweitern den Designraum für die Interaktion am Körper. Multi-Touch Skin ermöglicht hochauflösende Multi-Touch-Eingaben am Körper. Wir präsentieren die ersten nicht-rechteckigen und hochauflösenden Multi-Touch-Sensor-Overlays zur Verwendung auf der Haut und stellen ein Design-Tool vor, das solche Sensoren in benutzerdefinierten Formen und Größen erzeugt. Empirische Ergebnisse aus zwei technischen Evaluierungen bestätigen, dass der Sensor auf dem Körper unter verschiedenen Bedingungen ein hohes Signal-Rausch-Verhältnis erreicht und eine hohe räumliche Auflösung aufweist, selbst wenn er starken Verformungen ausgesetzt ist. Drittens, da Epidermisgeräte in Kontakt mit der Haut stehen, bieten sie die Möglichkeit, reichhaltige physiologische Signale des Körpers zu erfassen. Um diese einzigartige Eigenschaft zu nutzen, werden in dieser Arbeit Techniken zur schnellen Herstellung und zum computergestützten Design von multimodalen Epidermisgeräten vorgestellt, die mehrere physiologische Signale des menschlichen Körpers messen können. Die mit diesen Techniken hergestellten Geräte können EKG (Elektrokardiogramm), EMG (Elektromyogramm) und EDA (elektrodermale Aktivität) messen. Darüber hinaus stellen wir eine computergestützte Design- und Optimierungsmethode vor, die auf den zugrunde liegenden anatomischen Modellen des Menschen basiert, um optimierte Gerätedesigns zu erstellen. Diese Designs bieten einen optimalen Kompromiss zwischen der Fähigkeit zur Erfassung physiologischer Signale und der Größe des Geräts. Das grafische Tool ermöglicht die einfache Festlegung von Designpräferenzen und die visuelle Analyse der generierten Designs in Echtzeit, was eine Optimierung durch den Designer im laufenden Betrieb ermöglicht. Experimentelle Ergebnisse zeigen eine hohe quantitative Übereinstimmung zwischen den Vorhersagen des Optimierers und den experimentell erfassten physiologischen Daten. Schließlich skizzieren wir aus einer multidisziplinären Perspektive einen Fahrplan für zukünftige Forschung in diesem Bereich, indem wir die nächsten wichtigen Schritte, Möglichkeiten und Herausforderungen hervorheben. Insgesamt trägt diese Arbeit zu einem ganzheitlichen Verständnis von Epidermisgeräten bei: Sie liefert ein empirisches und konzeptionelles Verständnis sowie technische Einblicke durch Beiträge zu DIY (Do-It-Yourself), schneller Fertigung und computergestützten Entwurfstechniken

    Development of paper-based microfluidic devices for environmental and food quality analysis, The

    Get PDF
    Includes bibliographical references.2016 Fall.Providing safe and nutritious food and water, both domestically and internationally, has long been a goal for improving global health. Recent legislations enacted within the United States have enabled government agencies to further regulate agricultural and industry standards, necessitating the need for more preventative approaches with regards to food and beverage quality and safety. Increasing detection speed and enabling field and production detection of point-source contamination are crucial to maintaining food and beverage safety as well as preventing detrimental disease outbreaks, such as those caused by bacterial contamination. The development of simple, inexpensive, and portable methods for detecting contamination indicators are key to reaching this goal. Moreover, recent developments into microfluidic approaches for analysis have shown great promise as platforms for providing faster simplified methods for detection. The work conducted within this dissertation focuses on the development of simple, inexpensive and disposable platforms for colorimetric and electrochemical analysis of food and beverage quality. Aside from more commonly studied polymer-based devices, recent advances in paper-based diagnostics have demonstrated use as an analytical platform capable of self-pumping, reagent storage, mixing, and implementation of various detection motifs. Herein, the development of microfluidic paper-based analytical devices (μPADs) is presented as a platform for the colorimetric detection of bacteria in food and water samples. Initial work was conducted for the paper-based, colorimetric detection of Listeria monocytogenes, Salmonella Typhimurium, and E. coli O157:H7 bacteria species, all of which have been associated with fatal, multistate food- and waterborne outbreaks. Detection was performed on ready-to-eat meats using a swabbing technique to collect and quickly culture surface contamination of bacteria using enzymatic assays within paper-based microwells. A scanner was used for imaging followed by use of image analysis software for semi-quantitative measurement determination. This method was further applied to the detection of bacteria in irrigation water, a known source of foodborne contamination, using a 3D-printed filter for collection and culture of bacteria present in low concentrations within water. Although colorimetric detection offers a simple, visual detection method, electrochemistry is an alternative, sensitive and portable method for detection. Use of common office materials such as transparency film and copy paper, as well as laboratory filter papers were studied and developed for optimal electrochemical platform performance. The use of microwires as a simple fabrication method for incorporating metallic or modified metallic electrodes into electrochemical paper-based devices (ePADs) was also developed. Electrochemical behavior in both well-based and flow-based ePADs was studied and implemented for the nonenzymatic detection of sugars in beverages using copper oxide modified microwires, and for the in-line flow detection of enzymatic assays using gold and platinum microwire electrodes respectively. Furthermore, the fast, inexpensive, and simple fabrication of carbon stencil-printed electrodes (CSPEs) on transparency film were demonstrated for the electrochemical detection of E. coli and Enterococci bacteria species, both indicators of fecal contamination, in food and water samples using enzymatic assays. These same assays could also be determined colorimetrically and a more portable cell phone was used to image and wirelessly send paper-based well-plate results. This method was developed for use in place of a more bulky and expensive plate reader, and results were used for comparison to electrochemical detection of bacteria from a single assay

    Advances in Antennas, Design Methods and Analysis Tools for Passive UHF RFID Tags

    Get PDF
    Radio-frequency identification (RFID) makes use radio waves to track objects equipped with electronic transponders, commonly known as tags. In passive RFID systems, the tags are remotely powered and they are composed of only two components: an antenna and an application specific integrated circuit (tag IC). At ultra high frequencies (UHF) this technology enables the rapid identification of a large quantity of tags at the distanc-es of several meters, also in the absence of line-of-sight connection with the tag. While the passive UHF RFID is currently used e.g. in supply chain management and access control, in the future the passive tags capable of ultra-low-power data transmission are envisioned to provide platforms for wireless sensor nodes. The maintenance-free and fully integrated on-tag electronics holds the promise to small, cheap, and inconspicuous tags, but achieving this in practice requires completely new design methods and analysis tools for antennas. Unlike conventional antennas, tag antennas need to be directly interfaced with an active load (tag IC) and seamlessly integrated with objects of various sizes and material contents. Here, especially the materials having adverse effect on the operation of conventional antennas present a major challenge, while at the same time the fundamental limitations on the performance of small antennas need to be considered. This work addresses the above-mentioned challenges in the design of antennas for passive tags. Based on the new analysis tools and modern computational electromagnetics, a framework specifically tailored for the development of tag antennas is established. Combined with novel electronics materials and new fabrication methods this is shown to provide compelling means for tag antenna development. In particular, it is shown that tags with antennas produced using printable electronics, which has great potential to enable fabrication antennas directly on various unconventional platforms, can achieve competitive performance against the copper-based references. Furthermore, novel high-permittivity materials can be exploited to develop miniature antennas for metal mountable tags. Finally, three case studies, where antennas for tags in challenging applications are developed using the proposed design framework, are presented. The prototype tags achieve performance exceeding state of the art and exhibit excellent structural properties for the seamless integration with the considered objects
    corecore