14,178 research outputs found

    Computing with cells: membrane systems - some complexity issues.

    Full text link
    Membrane computing is a branch of natural computing which abstracts computing models from the structure and the functioning of the living cell. The main ingredients of membrane systems, called P systems, are (i) the membrane structure, which consists of a hierarchical arrangements of membranes which delimit compartments where (ii) multisets of symbols, called objects, evolve according to (iii) sets of rules which are localised and associated with compartments. By using the rules in a nondeterministic/deterministic maximally parallel manner, transitions between the system configurations can be obtained. A sequence of transitions is a computation of how the system is evolving. Various ways of controlling the transfer of objects from one membrane to another and applying the rules, as well as possibilities to dissolve, divide or create membranes have been studied. Membrane systems have a great potential for implementing massively concurrent systems in an efficient way that would allow us to solve currently intractable problems once future biotechnology gives way to a practical bio-realization. In this paper we survey some interesting and fundamental complexity issues such as universality vs. nonuniversality, determinism vs. nondeterminism, membrane and alphabet size hierarchies, characterizations of context-sensitive languages and other language classes and various notions of parallelism

    A syntax for semantics in P-Lingua

    Get PDF
    P-Lingua is a software framework for Membrane Computing, it includes a programming language, also called P-Lingua, for writting P system de nitions using a syntax close to standard scienti c notation. The rst line of a P-Lingua le is an unique identi er de ning the variant or model of P system to be used, i.e, the semantics of the P system. Software tools based on P-Lingua use this identi er to select a simulation algorithm implementing the corresponding derivation mode. Derivation modes de ne how to obtain a con guration Ct+1 from a con guration Ct. This information is usually hard-coded in the simulation algorithm. The P system model also de nes what types or rules can be used, the P-Lingua compiler uses the identi er to select an speci c parser for the le. In this case, a set of parsers is codi ed within the compiler tool. One for each unique identi er. P-Lingua has grown during the last 12 years, including more and more P system models. From a software engineering point of view, this approximation implies a continous development of the framework, leading to a monolithic software which is hard to debug and maintain. In this paper, we propose a new software approximation for the framework, including a new syntax for de ning rule patterns and derivation modes. The P-Lingua users can now de ne custom P system models instead of hard-coding them in the software. This approximation leads to a more exible solution which is easier to maintain and debug. Moreover, users could de ne and play with new/experimental P system models

    A Process Algebraical Approach to Modelling Compartmentalized Biological Systems

    Get PDF
    This paper introduces Protein Calculus, a special modeling language designed for encoding and calculating the behaviors of compartmentilized biological systems. The formalism combines, in a unified framework, two successful computational paradigms - process algebras and membrane systems. The goal of Protein Calculus is to provide a formal tool for transforming collected information from in vivo experiments into coded definition of the different types of proteins, complexes of proteins, and membrane-organized systems of such entities. Using this encoded information as input, our calculus computes, in silico, the possible behaviors of a living system. This is the preliminary version of a paper that was published in Proceedings of International Conference of Computational Methods in Sciences and Engineering (ICCMSE), American Institute of Physics, AIP Proceedings, N 2: 642-646, 2007 (http://scitation.aip.org/dbt/dbt.jsp?KEY=APCPCS&Volume=963&Issue=2)

    Limits on P Systems with Proteins and Without Division

    Get PDF
    In the field of Membrane Computing, computational complexity theory has been widely studied trying to nd frontiers of efficiency by means of syntactic or semantical ingredients. The objective of this is to nd two kinds of systems, one non-efficient and another one, at least, presumably efficient, that is, that can solve NP-complete prob- lems in polynomial time, and adapt a solution of such a problem in the former. If it is possible, then P = NP. Several borderlines have been defi ned, and new characterizations of different types of membrane systems have been published. In this work, a certain type of P system, where proteins act as a supporting element for a rule to be red, is studied. In particular, while division rules, the abstraction of cellular mitosis is forbidden, only problems from class P can be solved, in contrast to the result obtained allowing them.Ministerio de Economía y Competitividad TIN2017-89842-PNational Natural Science Foundation of China No 6132010600

    Probabilistic Guarded P Systems, A New Formal Modelling Framework

    Get PDF
    Multienvironment P systems constitute a general, formal framework for modelling the dynamics of population biology, which consists of two main approaches: stochastic and probabilistic. The framework has been successfully used to model biologic systems at both micro (e.g. bacteria colony) and macro (e.g. real ecosystems) levels, respectively. In this paper, we extend the general framework in order to include a new case study related to P. Oleracea species. The extension is made by a new variant within the probabilistic approach, called Probabilistic Guarded P systems (in short, PGP systems). We provide a formal definition, a simulation algorithm to capture the dynamics, and a survey of the associated software.Ministerio de Economía y Competitividad TIN2012- 37434Junta de Andalucía P08-TIC-0420

    Solving SAT in linear time with a neural-like membrane system

    Get PDF
    We present in this paper a neural-like membrane system solving the SAT problem in linear time. These neural Psystems are nets of cells working with multisets. Each cell has a finite state memory, processes multisets of symbol-impulses, and can send impulses (?excitations?) to the neighboring cells. The maximal mode of rules application and the replicative mode of communication between cells are at the core of the eficiency of these systems

    A Framework for Complexity Classes in Membrane Computing

    Get PDF
    The purpose of the present work is to give a general idea about the existing results and open problems concerning the study of complexity classes within the membrane computing framework. To this aim, membrane systems (seen as computing devices) are briefly introduced, providing the basic definition and summarizing the key ideas, trying to cover the various approaches that are under investigation in this area – of course, special attention is paid to the study of complexity classes. The paper concludes with some final remarks that hint the reasons why this field (as well as other unconventional models of computation) is attracting the attention of a growing community.Ministerio de Educación y Ciencia TIN2005-09345-C04-01Junta de Andalucía TIC-58

    Process Calculi Abstractions for Biology

    Get PDF
    Several approaches have been proposed to model biological systems by means of the formal techniques and tools available in computer science. To mention just a few of them, some representations are inspired by Petri Nets theory, and some other by stochastic processes. A most recent approach consists in interpreting the living entities as terms of process calculi where the behavior of the represented systems can be inferred by applying syntax-driven rules. A comprehensive picture of the state of the art of the process calculi approach to biological modeling is still missing. This paper goes in the direction of providing such a picture by presenting a comparative survey of the process calculi that have been used and proposed to describe the behavior of living entities. This is the preliminary version of a paper that was published in Algorithmic Bioprocesses. The original publication is available at http://www.springer.com/computer/foundations/book/978-3-540-88868-
    • …
    corecore