22 research outputs found

    Design of Soft, Modular Appendages for a Bio-inspired Multi-Legged Terrestrial Robot

    Full text link
    Soft robots have the ability to adapt to their environment, which makes them suitable for use in disaster areas and agricultural fields, where their mobility is constrained by complex terrain. One of the main challenges in developing soft terrestrial robots is that the robot must be soft enough to adapt to its environment, but also rigid enough to exert the required force on the ground to locomote. In this paper, we report a pneumatically driven, soft modular appendage made of silicone for a terrestrial robot capable of generating specific mechanical movement to locomote and transport loads in the desired direction. This two-segmented soft appendage uses actuation in between the joint and the lower segment of the appendage to ensure adequate rigidity to exert the required force to locomote. A prototype of a soft-rigid-bodied tethered physical robot was developed and two sets of experiments were carried out in both air and underwater environments to assess its performance. The experimental results address the effectiveness of the soft appendage to generate adequate force to navigate through various environments and our design method offers a simple, low-cost, and efficient way to develop terradynamically capable soft appendages that can be used in a variety of locomotion applications

    Design, Actuation, and Functionalization of Untethered Soft Magnetic Robots with Life-Like Motions: A Review

    Full text link
    Soft robots have demonstrated superior flexibility and functionality than conventional rigid robots. These versatile devices can respond to a wide range of external stimuli (including light, magnetic field, heat, electric field, etc.), and can perform sophisticated tasks. Notably, soft magnetic robots exhibit unparalleled advantages among numerous soft robots (such as untethered control, rapid response, and high safety), and have made remarkable progress in small-scale manipulation tasks and biomedical applications. Despite the promising potential, soft magnetic robots are still in their infancy and require significant advancements in terms of fabrication, design principles, and functional development to be viable for real-world applications. Recent progress shows that bionics can serve as an effective tool for developing soft robots. In light of this, the review is presented with two main goals: (i) exploring how innovative bioinspired strategies can revolutionize the design and actuation of soft magnetic robots to realize various life-like motions; (ii) examining how these bionic systems could benefit practical applications in small-scale solid/liquid manipulation and therapeutic/diagnostic-related biomedical fields

    Field Model Identification and Control of a Mobile Electromagnet for Remote Actuation of Soft Robots

    Get PDF
    The actuation of miniaturized robots through external magnetic fields has great potential for medical applications. The controllability properties of the miniaturized robots are affected by magnetic field generation modality. In this work, the magnetic field of a mobile electromagnet, notably capable to generate a desired magnetic field in large 3D workspaces, has been identified first. Then, a control model of the field generation system has been developed to produce a desired magnetic field designed to generate a locomotion gait in a legged miniaturized robot. Preliminary experiments prove the viability of the approach.</p

    3D PRINTING OF IRON OXIDE INCORPORATED POLYDIMETHYLSILOXANE SOFT MAGNETIC ACTUATOR

    Get PDF
    Soft actuators have grown to be a topic of great scientific interest recently. As the fabrication of soft actuators with conventional microfabrication methods are tedious, expensive, and time consuming, employment of 3-D printing fabrication methods appears promising as they can simplify fabrication and reduce the production cost. Complex structures can be fabricated with 3-D printing such as helical coils can achieve actuation performances that otherwise would not be possible with simpler geometries. In this thesis development of soft magnetic helical coil actuators of iron-oxide embedded polydimethylsiloxane (PDMS) was achieved with embedded 3-D printing techniques. Composites with three different weight ratios of 10%, 20%, and 30% iron nanoparticles to PDMS were formulated. Using iron nanoparticles with 15-20nm size helps preserve viscosity of the printing material low enough that it was possible to print it with small gauge 29 needle (180 micrometers inner diameter). The hydrogel support of Pluroic f-127 bath and the ability to maintain the ratio of the printed fiber’s diameter to coil diameter close to 0.25 approximately resulted in the successful fabrication and release of fabricated helical coil structures. This enabled 3-D printed structures characterized as magnetic actuators to achieve linear and bending actuation of more than 300% and 80°respectively in the case of composites with 30% iron oxide nanoparticles. Moreover, it was shown that the 3D printed helical coils with 10% iron oxide nanoparticles can be utilized as an untethered soft robot that is capable of locomotion on 45 and 90 degrees inclines under an applied magnetic field

    Magnetic-field-induced propulsion of jellyfish-inspired soft robotic swimmers

    Get PDF
    The multifaceted appearance of soft robots in the form of swimmers, catheters, surgical devices, and drug-carrier vehicles in biomedical and microfluidic applications is ubiquitous today. Jellyfish-inspired soft robotic swimmers (jellyfishbots) have been fabricated and experimentally characterized by several researchers that reported their swimming kinematics and multimodal locomotion. However, the underlying physical mechanisms that govern magnetic-field-induced propulsion are not yet fully understood. Here, we use a robust and efficient computational framework to study the jellyfishbot swimming kinematics and the induced flow field dynamics through numerical simulation. We consider a two-dimensional model jellyfishbot that has flexible lappets, which are symmetric about the jellyfishbot center. These lappets exhibit flexural deformation when subjected to external magnetic fields to displace the surrounding fluid, thereby generating the thrust required for propulsion. We perform a parametric sweep to explore the jellyfishbot kinematic performance for different system parameters—structural, fluidic, and magnetic. In jellyfishbots, the soft magnetic composite elastomeric lappets exhibit temporal and spatial asymmetries when subjected to unsteady external magnetic fields. The average speed is observed to be dependent on both these asymmetries, quantified by the glide magnitude and the net area swept by the lappet tips per swimming cycle, respectively. We observe that a judicious choice of the applied magnetic field and remnant magnetization profile in the jellyfishbot lappets enhances both these asymmetries. Furthermore, the dependence of the jellyfishbot swimming speed upon the net area swept (spatial asymmetry) is twice as high as the dependence of speed on the glide ratio (temporal asymmetry). Finally, functional relationships between the swimming speed and different kinematic parameters and nondimensional numbers are developed. Our results provide guidelines for the design of improved jellyfish-inspired magnetic soft robotic swimmers

    A Monolithic Compliant Continuum Manipulator:A Proof-of-Concept Study

    Get PDF
    Continuum robots have the potential to form an effective interface between the patient and surgeon in minimally invasive procedures. Magnetic actuation has the potential for accurate catheter steering, reducing tissue trauma and decreasing radiation exposure. In this paper, a new design of a monolithic metallic compliant continuum manipulator is presented, with flexures for precise motion. Contactless actuation is achieved using time-varying magnetic fields generated by an array of electromagnetic coils. The motion of the manipulator under magnetic actuation for planar deflection is studied. The mean errors of the theoretical model compared to experiments over three designs are found to be 1.9 mm and 5.1degrees in estimating the in-plane position and orientation of the tip of the manipulator, respectively and 1.2 mm for the whole shape of the manipulator. Maneuverability of the manipulator is demonstrated by steering it along a path of known curvature and also through a gelatin phantom which is visualized in real time using ultrasound imaging, substantiating its application as a steerable surgical manipulator

    DESIGN, MODELING, AND FABRICATION OF MICROROBOT LEGS

    Get PDF
    This dissertation presents work done in the design, modeling, and fabrication of magnetically actuated microrobot legs. Novel fabrication processes for manufacturing multi-material compliant mechanisms have been used to fabricate effective legged robots at both the meso and micro scales, where the meso scale refers to the transition between macro and micro scales. This work discusses the development of a novel mesoscale manufacturing process, Laser Cut Elastomer Refill (LaCER), for prototyping millimeter-scale multi-material compliant mechanisms with elastomer hinges. Additionally discussed is an extension of previous work on the development of a microscale manufacturing process for fabricating micrometer-sale multi-material compliant mechanisms with elastomer hinges, with the added contribution of a method for incorporating magnetic materials for mechanism actuation using externally applied fields. As both of the fabrication processes outlined make significant use of highly compliant elastomer hinges, a fast, accurate modeling method for these hinges was desired for mechanism characterization and design. An analytical model was developed for this purpose, making use of the pseudo rigid-body (PRB) model and extending its utility to hinges with significant stretch component, such as those fabricated from elastomer materials. This model includes 3 springs with stiffnesses relating to material stiffness and hinge geometry, with additional correction factors for aspects particular to common multi-material hinge geometry. This model has been verified against a finite element analysis model (FEA), which in turn was matched to experimental data on mesoscale hinges manufactured using LaCER. These modeling methods have additionally been verified against experimental data from microscale hinges manufactured using the Si/elastomer/magnetics MEMS process. The development of several mechanisms is also discussed: including a mesoscale LaCER-fabricated hexapedal millirobot capable of walking at 2.4 body lengths per second; prototyped mesoscale LaCER-fabricated underactuated legs with asymmetrical features for improved performance; 1 centimeter cubed LaCER-fabricated magnetically-actuated hexapods which use the best-performing underactuated leg design to locomote at up to 10.6 body lengths per second; five microfabricated magnetically actuated single-hinge mechanisms; a 14-hinge, 11-link microfabricated gripper mechanism; a microfabricated robot leg mechansim demonstrated clearing a step height of 100 micrometers; and a 4 mm x 4 mm x 5 mm, 25 mg microfabricated magnetically-actuated hexapod, demonstrated walking at up to 2.25 body lengths per second
    corecore