2,476 research outputs found

    LGMD based neural network for automatic collision detection

    Get PDF
    Real-time collision detection in dynamic scenarios is a hard task if the algorithms used are based on conventional techniques of computer vision, since these are computationally complex and, consequently, time-consuming. On the other hand, bio-inspired visual sensors are suitable candidates for mobile robot navigation in unknown environments, due to their computational simplicity. The Lobula Giant Movement Detector (LGMD) neuron, located in the locust optic lobe, responds selectively to approaching objects. This neuron has been used to develop bio-inspired neural networks for collision avoidance. In this work, we propose a new LGMD model based on two previous models, in order to improve over them by incorporating other algorithms. To assess the real-time properties of the proposed model, it was applied to a real robot. Results shown that the LGMD neuron model can robustly support collision avoidance in complex visual scenarios.(undefined

    Development of a bio-inspired vision system for mobile micro-robots

    Get PDF
    In this paper, we present a new bio-inspired vision system for mobile micro-robots. The processing method takes inspiration from vision of locusts in detecting the fast approaching objects. Research suggested that locusts use wide field visual neuron called the lobula giant movement detector to respond to imminent collisions. We employed the locusts' vision mechanism to motion control of a mobile robot. The selected image processing method is implemented on a developed extension module using a low-cost and fast ARM processor. The vision module is placed on top of a micro-robot to control its trajectory and to avoid obstacles. The observed results from several performed experiments demonstrated that the developed extension module and the inspired vision system are feasible to employ as a vision module for obstacle avoidance and motion control

    Reactive direction control for a mobile robot: A locust-like control of escape direction emerges when a bilateral pair of model locust visual neurons are integrated

    Get PDF
    Locusts possess a bilateral pair of uniquely identifiable visual neurons that respond vigorously to the image of an approaching object. These neurons are called the lobula giant movement detectors (LGMDs). The locust LGMDs have been extensively studied and this has lead to the development of an LGMD model for use as an artificial collision detector in robotic applications. To date, robots have been equipped with only a single, central artificial LGMD sensor, and this triggers a non-directional stop or rotation when a potentially colliding object is detected. Clearly, for a robot to behave autonomously, it must react differently to stimuli approaching from different directions. In this study, we implement a bilateral pair of LGMD models in Khepera robots equipped with normal and panoramic cameras. We integrate the responses of these LGMD models using methodologies inspired by research on escape direction control in cockroaches. Using ‘randomised winner-take-all’ or ‘steering wheel’ algorithms for LGMD model integration, the khepera robots could escape an approaching threat in real time and with a similar distribution of escape directions as real locusts. We also found that by optimising these algorithms, we could use them to integrate the left and right DCMD responses of real jumping locusts offline and reproduce the actual escape directions that the locusts took in a particular trial. Our results significantly advance the development of an artificial collision detection and evasion system based on the locust LGMD by allowing it reactive control over robot behaviour. The success of this approach may also indicate some important areas to be pursued in future biological research

    A modified model for the Lobula Giant Movement Detector and its FPGA implementation

    Get PDF
    The Lobula Giant Movement Detector (LGMD) is a wide-field visual neuron located in the Lobula layer of the Locust nervous system. The LGMD increases its firing rate in response to both the velocity of an approaching object and the proximity of this object. It has been found that it can respond to looming stimuli very quickly and trigger avoidance reactions. It has been successfully applied in visual collision avoidance systems for vehicles and robots. This paper introduces a modified neural model for LGMD that provides additional depth direction information for the movement. The proposed model retains the simplicity of the previous model by adding only a few new cells. It has been simplified and implemented on a Field Programmable Gate Array (FPGA), taking advantage of the inherent parallelism exhibited by the LGMD, and tested on real-time video streams. Experimental results demonstrate the effectiveness as a fast motion detector

    Near range path navigation using LGMD visual neural networks

    Get PDF
    In this paper, we proposed a method for near range path navigation for a mobile robot by using a pair of biologically inspired visual neural network – lobula giant movement detector (LGMD). In the proposed binocular style visual system, each LGMD processes images covering a part of the wide field of view and extracts relevant visual cues as its output. The outputs from the two LGMDs are compared and translated into executable motor commands to control the wheels of the robot in real time. Stronger signal from the LGMD in one side pushes the robot away from this side step by step; therefore, the robot can navigate in a visual environment naturally with the proposed vision system. Our experiments showed that this bio-inspired system worked well in different scenarios

    Redundant neural vision systems: competing for collision recognition roles

    Get PDF
    Ability to detect collisions is vital for future robots that interact with humans in complex visual environments. Lobula giant movement detectors (LGMD) and directional selective neurons (DSNs) are two types of identified neurons found in the visual pathways of insects such as locusts. Recent modelling studies showed that the LGMD or grouped DSNs could each be tuned for collision recognition. In both biological and artificial vision systems, however, which one should play the collision recognition role and the way the two types of specialized visual neurons could be functioning together are not clear. In this modeling study, we compared the competence of the LGMD and the DSNs, and also investigate the cooperation of the two neural vision systems for collision recognition via artificial evolution. We implemented three types of collision recognition neural subsystems – the LGMD, the DSNs and a hybrid system which combines the LGMD and the DSNs subsystems together, in each individual agent. A switch gene determines which of the three redundant neural subsystems plays the collision recognition role. We found that, in both robotics and driving environments, the LGMD was able to build up its ability for collision recognition quickly and robustly therefore reducing the chance of other types of neural networks to play the same role. The results suggest that the LGMD neural network could be the ideal model to be realized in hardware for collision recognition

    A modified neural network model for Lobula Giant Movement Detector with additional depth movement feature

    Get PDF
    The Lobula Giant Movement Detector (LGMD) is a wide-field visual neuron that is located in the Lobula layer of the Locust nervous system. The LGMD increases its firing rate in response to both the velocity of the approaching object and its proximity. It has been found that it can respond to looming stimuli very quickly and can trigger avoidance reactions whenever a rapidly approaching object is detected. It has been successfully applied in visual collision avoidance systems for vehicles and robots. This paper proposes a modified LGMD model that provides additional movement depth direction information. The proposed model retains the simplicity of the previous neural network model, adding only a few new cells. It has been tested on both simulated and recorded video data sets. The experimental results shows that the modified model can very efficiently provide stable information on the depth direction of movement

    A contribution to vision-based autonomous helicopter flight in urban environments

    Get PDF
    A navigation strategy that exploits the optic flow and inertial information to continuously avoid collisions with both lateral and frontal obstacles has been used to control a simulated helicopter flying autonomously in a textured urban environment. Experimental results demonstrate that the corresponding controller generates cautious behavior, whereby the helicopter tends to stay in the middle of narrow corridors, while its forward velocity is automatically reduced when the obstacle density increases. When confronted with a frontal obstacle, the controller is also able to generate a tight U-turn that ensures the UAV’s survival. The paper provides comparisons with related work, and discusses the applicability of the approach to real platforms
    corecore