8,724 research outputs found

    Gait recognition and understanding based on hierarchical temporal memory using 3D gait semantic folding

    Get PDF
    Gait recognition and understanding systems have shown a wide-ranging application prospect. However, their use of unstructured data from image and video has affected their performance, e.g., they are easily influenced by multi-views, occlusion, clothes, and object carrying conditions. This paper addresses these problems using a realistic 3-dimensional (3D) human structural data and sequential pattern learning framework with top-down attention modulating mechanism based on Hierarchical Temporal Memory (HTM). First, an accurate 2-dimensional (2D) to 3D human body pose and shape semantic parameters estimation method is proposed, which exploits the advantages of an instance-level body parsing model and a virtual dressing method. Second, by using gait semantic folding, the estimated body parameters are encoded using a sparse 2D matrix to construct the structural gait semantic image. In order to achieve time-based gait recognition, an HTM Network is constructed to obtain the sequence-level gait sparse distribution representations (SL-GSDRs). A top-down attention mechanism is introduced to deal with various conditions including multi-views by refining the SL-GSDRs, according to prior knowledge. The proposed gait learning model not only aids gait recognition tasks to overcome the difficulties in real application scenarios but also provides the structured gait semantic images for visual cognition. Experimental analyses on CMU MoBo, CASIA B, TUM-IITKGP, and KY4D datasets show a significant performance gain in terms of accuracy and robustness

    An investigation into spike-based neuromorphic approaches for artificial olfactory systems

    Get PDF
    The implementation of neuromorphic methods has delivered promising results for vision and auditory sensors. These methods focus on mimicking the neuro-biological architecture to generate and process spike-based information with minimal power consumption. With increasing interest in developing low-power and robust chemical sensors, the application of neuromorphic engineering concepts for electronic noses has provided an impetus for research focusing on improving these instruments. While conventional e-noses apply computationally expensive and power-consuming data-processing strategies, neuromorphic olfactory sensors implement the biological olfaction principles found in humans and insects to simplify the handling of multivariate sensory data by generating and processing spike-based information. Over the last decade, research on neuromorphic olfaction has established the capability of these sensors to tackle problems that plague the current e-nose implementations such as drift, response time, portability, power consumption and size. This article brings together the key contributions in neuromorphic olfaction and identifies future research directions to develop near-real-time olfactory sensors that can be implemented for a range of applications such as biosecurity and environmental monitoring. Furthermore, we aim to expose the computational parallels between neuromorphic olfaction and gustation for future research focusing on the correlation of these senses

    Report 2011

    No full text

    Low-Light Enhancement in the Frequency Domain

    Full text link
    Decreased visibility, intensive noise, and biased color are the common problems existing in low-light images. These visual disturbances further reduce the performance of high-level vision tasks, such as object detection, and tracking. To address this issue, some image enhancement methods have been proposed to increase the image contrast. However, most of them are implemented only in the spatial domain, which can be severely influenced by noise signals while enhancing. Hence, in this work, we propose a novel residual recurrent multi-wavelet convolutional neural network R2-MWCNN learned in the frequency domain that can simultaneously increase the image contrast and reduce noise signals well. This end-to-end trainable network utilizes a multi-level discrete wavelet transform to divide input feature maps into distinct frequencies, resulting in a better denoise impact. A channel-wise loss function is proposed to correct the color distortion for more realistic results. Extensive experiments demonstrate that our proposed R2-MWCNN outperforms the state-of-the-art methods quantitively and qualitatively.Comment: 8 page
    • …
    corecore