8,844 research outputs found

    Diffusion Based Molecular Communication: Principle, Key Technologies, and Challenges

    Full text link
    Molecular communication (MC) is a kind of communication technology based on biochemical molecules for internet of bio-nano things, in which the biochemical molecule is used as the information carrier for the interconnection of nano-devices. In this paper, the basic principle of diffusion based MC and the corresponding key technologies are comprehensively surveyed. In particular, the state-of-the-art achievements relative to the diffusion based MC are discussed and compared, including the system model, the system performance analysis with key influencing factors, the information coding and modulation techniques. Meanwhile, the multi-hop nano-network based on the diffusion MC is presented as well. Additionally, given the extensiveness of the research area, open issues and challenges are presented to spur future investigations, in which the involvement of channel model, information theory, self-organizing nano-network, and biochemical applications are put forward

    A Comprehensive Survey of Recent Advancements in Molecular Communication

    Full text link
    With much advancement in the field of nanotechnology, bioengineering and synthetic biology over the past decade, microscales and nanoscales devices are becoming a reality. Yet the problem of engineering a reliable communication system between tiny devices is still an open problem. At the same time, despite the prevalence of radio communication, there are still areas where traditional electromagnetic waves find it difficult or expensive to reach. Points of interest in industry, cities, and medical applications often lie in embedded and entrenched areas, accessible only by ventricles at scales too small for conventional radio waves and microwaves, or they are located in such a way that directional high frequency systems are ineffective. Inspired by nature, one solution to these problems is molecular communication (MC), where chemical signals are used to transfer information. Although biologists have studied MC for decades, it has only been researched for roughly 10 year from a communication engineering lens. Significant number of papers have been published to date, but owing to the need for interdisciplinary work, much of the results are preliminary. In this paper, the recent advancements in the field of MC engineering are highlighted. First, the biological, chemical, and physical processes used by an MC system are discussed. This includes different components of the MC transmitter and receiver, as well as the propagation and transport mechanisms. Then, a comprehensive survey of some of the recent works on MC through a communication engineering lens is provided. The paper ends with a technology readiness analysis of MC and future research directions.Comment: Accepted for publication in IEEE Communications Surveys & Tutorial

    SMIET: Simultaneous Molecular Information and Energy Transfer

    Full text link
    The performance of communication systems is fundamentally limited by the loss of energy through propagation and circuit inefficiencies. In this article, we show that it is possible to achieve ultra low energy communications at the nano-scale, if diffusive molecules are used for carrying data. Whilst the energy of electromagnetic waves will inevitably decay as a function of transmission distance and time, the energy in individual molecules does not. Over time, the receiver has an opportunity to recover some, if not all of the molecular energy transmitted. The article demonstrates the potential of ultra-low energy simultaneous molecular information and energy transfer (SMIET) through the design of two different nano-relay systems, and the discusses how molecular communications can benefit more from crowd energy harvesting than traditional wave-based systems

    Molecular Communication Using Brownian Motion with Drift

    Full text link
    Inspired by biological communication systems, molecular communication has been proposed as a viable scheme to communicate between nano-sized devices separated by a very short distance. Here, molecules are released by the transmitter into the medium, which are then sensed by the receiver. This paper develops a preliminary version of such a communication system focusing on the release of either one or two molecules into a fluid medium with drift. We analyze the mutual information between transmitter and the receiver when information is encoded in the time of release of the molecule. Simplifying assumptions are required in order to calculate the mutual information, and theoretical results are provided to show that these calculations are upper bounds on the true mutual information. Furthermore, optimized degree distributions are provided, which suggest transmission strategies for a variety of drift velocities.Comment: 20 pages, 7 figures, Accepted for publication in IEEE Trans. on NanoBioscienc

    Relaying in Diffusion-Based Molecular Communication

    Full text link
    Molecular communication between biological entities is a new paradigm in communications. Recently, we studied molecular communication between two nodes formed from synthetic bacteria. Due to high randomness in behavior of bacteria, we used a population of them in each node. The reliability of such communication systems depends on both the maximum concentration of molecules that a transmitter node is able to produce at the receiver node as well as the number of bacteria in each nodes. This maximum concentration of molecules falls with distance which makes the communication to the far nodes nearly impossible. In order to alleviate this problem, in this paper, we propose to use a molecular relaying node. The relay node can resend the message either by the different or the same type of molecules as the original signal from the transmitter. We study two scenarios of relaying. In the first scenario, the relay node simply senses the received concentration and forwards it to the receiver. We show that this sense and forward scenario, depending on the type of molecules used for relaying, results in either increasing the range of concentration of molecules at the receiver or increasing the effective number of bacteria in the receiver node. For both cases of sense and forward relaying, we obtain the resulting improvement in channel capacity. We conclude that multi-type molecular relaying outperforms the single-type relaying. In the second scenario, we study the decode and forward relaying for the M-ary signaling scheme. We show that this relaying strategy increases the reliability of M-ary communication significantly

    On the Physical Design of Molecular Communication Receiver Based on Nanoscale Biosensors

    Full text link
    Molecular communications (MC), where molecules are used to encode, transmit, and receive information, is a promising means of enabling the coordination of nanoscale devices. The paradigm has been extensively studied from various aspects, including channel modeling and noise analysis. Comparatively little attention has been given to the physical design of molecular receiver and transmitter, envisioning biological synthetic cells with intrinsic molecular reception and transmission capabilities as the future nanomachines. However, this assumption leads to a discrepancy between the envisaged applications requiring complex communication interfaces and protocols, and the very limited computational capacities of the envisioned biological nanomachines. In this paper, we examine the feasibility of designing a molecular receiver, in a physical domain other than synthetic biology, meeting the basic requirements of nanonetwork applications. We first review the state-of-the-art biosensing approaches to determine whether they can inspire a receiver design. We reveal that nanoscale field effect transistor based electrical biosensor technology (bioFET) is a particularly useful starting point for designing a molecular receiver. Focusing on bioFET-based molecular receivers with a conceptual approach, we provide a guideline elaborating on their operation principles, performance metrics and design parameters. We then provide a simple model for signal flow in silicon nanowire (SiNW) FET-based molecular receiver. Lastly, we discuss the practical challenges of implementing the receiver and present the future research avenues from a communication theoretical perspective

    Compound Poisson Noise Sources in Diffusion-based Molecular Communication

    Full text link
    Diffusion-based molecular communication (DMC) is one of the most promising approaches for realizing nano-scale communications for healthcare applications. The DMC systems in in-vivo environments may encounter biological entities that release molecules identical to the molecules used for signaling as part of their functionality. Such entities in the environment act as external noise sources from the DMC system's perspective. In this paper, the release of molecules by biological external noise sources is particularly modeled as a compound Poisson process. The impact of compound Poisson noise sources (CPNSs) on the performance of a point-to-point DMC system is investigated. To this end, the noise from the CPNS observed at the receiver is characterized. Considering a simple on-off keying (OOK) modulation and formulating symbol-by-symbol maximum likelihood (ML) detector, the performance of DMC system in the presence of the CPNS is analyzed. For special case of CPNS in high-rate regime, the noise received from the CPNS is approximated as a Poisson process whose rate is normally distributed. In this case, it is proved that a simple single-threshold detector (STD) is an optimal ML detector. Our results reveal that in general, adopting the conventional simple homogeneous Poisson noise model may lead to overly optimistic performance predictions, if a CPNS is present

    Molecular communication in fluid media: The additive inverse Gaussian noise channel

    Full text link
    We consider molecular communication, with information conveyed in the time of release of molecules. The main contribution of this paper is the development of a theoretical foundation for such a communication system. Specifically, we develop the additive inverse Gaussian (IG) noise channel model: a channel in which the information is corrupted by noise with an inverse Gaussian distribution. We show that such a channel model is appropriate for molecular communication in fluid media - when propagation between transmitter and receiver is governed by Brownian motion and when there is positive drift from transmitter to receiver. Taking advantage of the available literature on the IG distribution, upper and lower bounds on channel capacity are developed, and a maximum likelihood receiver is derived. Theory and simulation results are presented which show that such a channel does not have a single quality measure analogous to signal-to-noise ratio in the AWGN channel. It is also shown that the use of multiple molecules leads to reduced error rate in a manner akin to diversity order in wireless communications. Finally, we discuss some open problems in molecular communications that arise from the IG system model.Comment: 28 pages, 8 figures. Submitted to IEEE Transactions on Information Theory. Corrects minor typos in the first versio

    Bio-imitaiton of Mexican migration routes to the USA with slime mould on 3D terrains

    Full text link
    Plasmodium of Physarum polycephalum is a large single cell visible by unaided eye. It shows sophisticated behavioural traits in foraging for nutrients and developing an optimal transport network of protoplasmic tubes spanning sources of nutrients. When placed in an environment with distributed sources of nutrients the cell 'computes' an optimal graph spanning the nutrients by growing a network of protoplasmic tubes. P. polycephalum imitates development of man-made transport networks of a country when configuration of nutrients represents major urban areas. We employ this feature of the slime mould to imitate mexican migration to USA. The Mexican migration to USA is the World's largest migration system. We bio-physically imitate the migration using slime mould P. polycephalum. In laboratory experiments with 3D Nylon terrains of USA we imitated development of migratory routes from Mexico-USA border to ten urban areas with high concentration of Mexican migrants. From results of laboratory experiments we extracted topologies of migratory routes, and highlighted a role of elevations in shaping the human movement networks

    Capacity of a Simple Intercellular Signal Transduction Channel

    Full text link
    We model the ligand-receptor molecular communication channel with a discrete-time Markov model, and show how to obtain the capacity of this channel. We show that the capacity-achieving input distribution is iid; further, unusually for a channel with memory, we show that feedback does not increase the capacity of this channel.Comment: 5 pages, 1 figure. To appear in the 2013 IEEE International Symposium on Information Theor
    • …
    corecore