142 research outputs found

    Model based Binaural Enhancement of Voiced and Unvoiced Speech

    Get PDF

    Model-based Speech Enhancement for Intelligibility Improvement in Binaural Hearing Aids

    Get PDF
    Speech intelligibility is often severely degraded among hearing impaired individuals in situations such as the cocktail party scenario. The performance of the current hearing aid technology has been observed to be limited in these scenarios. In this paper, we propose a binaural speech enhancement framework that takes into consideration the speech production model. The enhancement framework proposed here is based on the Kalman filter that allows us to take the speech production dynamics into account during the enhancement process. The usage of a Kalman filter requires the estimation of clean speech and noise short term predictor (STP) parameters, and the clean speech pitch parameters. In this work, a binaural codebook-based method is proposed for estimating the STP parameters, and a directional pitch estimator based on the harmonic model and maximum likelihood principle is used to estimate the pitch parameters. The proposed method for estimating the STP and pitch parameters jointly uses the information from left and right ears, leading to a more robust estimation of the filter parameters. Objective measures such as PESQ and STOI have been used to evaluate the enhancement framework in different acoustic scenarios representative of the cocktail party scenario. We have also conducted subjective listening tests on a set of nine normal hearing subjects, to evaluate the performance in terms of intelligibility and quality improvement. The listening tests show that the proposed algorithm, even with access to only a single channel noisy observation, significantly improves the overall speech quality, and the speech intelligibility by up to 15%.Comment: after revisio

    Model-based speech enhancement for hearing aids

    Get PDF

    Deep Denoising for Hearing Aid Applications

    Full text link
    Reduction of unwanted environmental noises is an important feature of today's hearing aids (HA), which is why noise reduction is nowadays included in almost every commercially available device. The majority of these algorithms, however, is restricted to the reduction of stationary noises. In this work, we propose a denoising approach based on a three hidden layer fully connected deep learning network that aims to predict a Wiener filtering gain with an asymmetric input context, enabling real-time applications with high constraints on signal delay. The approach is employing a hearing instrument-grade filter bank and complies with typical hearing aid demands, such as low latency and on-line processing. It can further be well integrated with other algorithms in an existing HA signal processing chain. We can show on a database of real world noise signals that our algorithm is able to outperform a state of the art baseline approach, both using objective metrics and subject tests.Comment: submitted to IWAENC 201

    Improving the Speech Intelligibility By Cochlear Implant Users

    Get PDF
    In this thesis, we focus on improving the intelligibility of speech for cochlear implants (CI) users. As an auditory prosthetic device, CI can restore hearing sensations for most patients with profound hearing loss in both ears in a quiet background. However, CI users still have serious problems in understanding speech in noisy and reverberant environments. Also, bandwidth limitation, missing temporal fine structures, and reduced spectral resolution due to a limited number of electrodes are other factors that raise the difficulty of hearing in noisy conditions for CI users, regardless of the type of noise. To mitigate these difficulties for CI listener, we investigate several contributing factors such as the effects of low harmonics on tone identification in natural and vocoded speech, the contribution of matched envelope dynamic range to the binaural benefits and contribution of low-frequency harmonics to tone identification in quiet and six-talker babble background. These results revealed several promising methods for improving speech intelligibility for CI patients. In addition, we investigate the benefits of voice conversion in improving speech intelligibility for CI users, which was motivated by an earlier study showing that familiarity with a talker’s voice can improve understanding of the conversation. Research has shown that when adults are familiar with someone’s voice, they can more accurately – and even more quickly – process and understand what the person is saying. This theory identified as the “familiar talker advantage” was our motivation to examine its effect on CI patients using voice conversion technique. In the present research, we propose a new method based on multi-channel voice conversion to improve the intelligibility of transformed speeches for CI patients

    M3-AUDIODEC: Multi-channel multi-speaker multi-spatial audio codec

    Full text link
    We introduce M3-AUDIODEC, an innovative neural spatial audio codec designed for efficient compression of multi-channel (binaural) speech in both single and multi-speaker scenarios, while retaining the spatial location information of each speaker. This model boasts versatility, allowing configuration and training tailored to a predetermined set of multi-channel, multi-speaker, and multi-spatial overlapping speech conditions. Key contributions are as follows: 1) Previous neural codecs are extended from single to multi-channel audios. 2) The ability of our proposed model to compress and decode for overlapping speech. 3) A groundbreaking architecture that compresses speech content and spatial cues separately, ensuring the preservation of each speaker's spatial context after decoding. 4) M3-AUDIODEC's proficiency in reducing the bandwidth for compressing two-channel speech by 48% when compared to individual binaural channel compression. Impressively, at a 12.6 kbps operation, it outperforms Opus at 24 kbps and AUDIODEC at 24 kbps by 37% and 52%, respectively. In our assessment, we employed speech enhancement and room acoustic metrics to ascertain the accuracy of clean speech and spatial cue estimates from M3-AUDIODEC. Audio demonstrations and source code are available online at https://github.com/anton-jeran/MULTI-AUDIODEC .Comment: More results and source code are available at https://anton-jeran.github.io/MAD
    • …
    corecore