315 research outputs found

    Binaural Sound Localization Based on Reverberation Weighting and Generalized Parametric Mapping

    Full text link

    Sound Event Localization, Detection, and Tracking by Deep Neural Networks

    Get PDF
    In this thesis, we present novel sound representations and classification methods for the task of sound event localization, detection, and tracking (SELDT). The human auditory system has evolved to localize multiple sound events, recognize and further track their motion individually in an acoustic environment. This ability of humans makes them context-aware and enables them to interact with their surroundings naturally. Developing similar methods for machines will provide an automatic description of social and human activities around them and enable machines to be context-aware similar to humans. Such methods can be employed to assist the hearing impaired to visualize sounds, for robot navigation, and to monitor biodiversity, the home, and cities. A real-life acoustic scene is complex in nature, with multiple sound events that are temporally and spatially overlapping, including stationary and moving events with varying angular velocities. Additionally, each individual sound event class, for example, a car horn can have a lot of variabilities, i.e., different cars have different horns, and within the same model of the car, the duration and the temporal structure of the horn sound is driver dependent. Performing SELDT in such overlapping and dynamic sound scenes while being robust is challenging for machines. Hence we propose to investigate the SELDT task in this thesis and use a data-driven approach using deep neural networks (DNNs). The sound event detection (SED) task requires the detection of onset and offset time for individual sound events and their corresponding labels. In this regard, we propose to use spatial and perceptual features extracted from multichannel audio for SED using two different DNNs, recurrent neural networks (RNNs) and convolutional recurrent neural networks (CRNNs). We show that using multichannel audio features improves the SED performance for overlapping sound events in comparison to traditional single-channel audio features. The proposed novel features and methods produced state-of-the-art performance for the real-life SED task and won the IEEE AASP DCASE challenge consecutively in 2016 and 2017. Sound event localization is the task of spatially locating the position of individual sound events. Traditionally, this has been approached using parametric methods. In this thesis, we propose a CRNN for detecting the azimuth and elevation angles of multiple temporally overlapping sound events. This is the first DNN-based method performing localization in complete azimuth and elevation space. In comparison to parametric methods which require the information of the number of active sources, the proposed method learns this information directly from the input data and estimates their respective spatial locations. Further, the proposed CRNN is shown to be more robust than parametric methods in reverberant scenarios. Finally, the detection and localization tasks are performed jointly using a CRNN. This method additionally tracks the spatial location with time, thus producing the SELDT results. This is the first DNN-based SELDT method and is shown to perform equally with stand-alone baselines for SED, localization, and tracking. The proposed SELDT method is evaluated on nine datasets that represent anechoic and reverberant sound scenes, stationary and moving sources with varying velocities, a different number of overlapping sound events and different microphone array formats. The results show that the SELDT method can track multiple overlapping sound events that are both spatially stationary and moving

    Functional Sensory Representations of Natural Stimuli: the Case of Spatial Hearing

    Get PDF
    In this thesis I attempt to explain mechanisms of neuronal coding in the auditory system as a form of adaptation to statistics of natural stereo sounds. To this end I analyse recordings of real-world auditory environments and construct novel statistical models of these data. I further compare regularities present in natural stimuli with known, experimentally observed neuronal mechanisms of spatial hearing. In a more general perspective, I use binaural auditory system as a starting point to consider the notion of function implemented by sensory neurons. In particular I argue for two, closely-related tenets: 1. The function of sensory neurons can not be fully elucidated without understanding statistics of natural stimuli they process. 2. Function of sensory representations is determined by redundancies present in the natural sensory environment. I present the evidence in support of the first tenet by describing and analysing marginal statistics of natural binaural sound. I compare observed, empirical distributions with knowledge from reductionist experiments. Such comparison allows to argue that the complexity of the spatial hearing task in the natural environment is much higher than analytic, physics-based predictions. I discuss the possibility that early brain stem circuits such as LSO and MSO do not \"compute sound localization\" as is often being claimed in the experimental literature. I propose that instead they perform a signal transformation, which constitutes the first step of a complex inference process. To support the second tenet I develop a hierarchical statistical model, which learns a joint sparse representation of amplitude and phase information from natural stereo sounds. I demonstrate that learned higher order features reproduce properties of auditory cortical neurons, when probed with spatial sounds. Reproduced aspects were hypothesized to be a manifestation of a fine-tuned computation specific to the sound-localization task. Here it is demonstrated that they rather reflect redundancies present in the natural stimulus. Taken together, results presented in this thesis suggest that efficient coding is a strategy useful for discovering structures (redundancies) in the input data. Their meaning has to be determined by the organism via environmental feedback

    Complex Neural Networks for Audio

    Get PDF
    Audio is represented in two mathematically equivalent ways: the real-valued time domain (i.e., waveform) and the complex-valued frequency domain (i.e., spectrum). There are advantages to the frequency-domain representation, e.g., the human auditory system is known to process sound in the frequency-domain. Furthermore, linear time-invariant systems are convolved with sources in the time-domain, whereas they may be factorized in the frequency-domain. Neural networks have become rather useful when applied to audio tasks such as machine listening and audio synthesis, which are related by their dependencies on high quality acoustic models. They ideally encapsulate fine-scale temporal structure, such as that encoded in the phase of frequency-domain audio, yet there are no authoritative deep learning methods for complex audio. This manuscript is dedicated to addressing the shortcoming. Chapter 2 motivates complex networks by their affinity with complex-domain audio, while Chapter 3 contributes methods for building and optimizing complex networks. We show that the naive implementation of Adam optimization is incorrect for complex random variables and show that selection of input and output representation has a significant impact on the performance of a complex network. Experimental results with novel complex neural architectures are provided in the second half of this manuscript. Chapter 4 introduces a complex model for binaural audio source localization. We show that, like humans, the complex model can generalize to different anatomical filters, which is important in the context of machine listening. The complex model\u27s performance is better than that of the real-valued models, as well as real- and complex-valued baselines. Chapter 5 proposes a two-stage method for speech enhancement. In the first stage, a complex-valued stochastic autoencoder projects complex vectors to a discrete space. In the second stage, long-term temporal dependencies are modeled in the discrete space. The autoencoder raises the performance ceiling for state of the art speech enhancement, but the dynamic enhancement model does not outperform other baselines. We discuss areas for improvement and note that the complex Adam optimizer improves training convergence over the naive implementation

    Proceedings of the EAA Spatial Audio Signal Processing symposium: SASP 2019

    Get PDF
    International audienc

    Ambisonics

    Get PDF
    This open access book provides a concise explanation of the fundamentals and background of the surround sound recording and playback technology Ambisonics. It equips readers with the psychoacoustical, signal processing, acoustical, and mathematical knowledge needed to understand the inner workings of modern processing utilities, special equipment for recording, manipulation, and reproduction in the higher-order Ambisonic format. The book comes with various practical examples based on free software tools and open scientific data for reproducible research. The book’s introductory section offers a perspective on Ambisonics spanning from the origins of coincident recordings in the 1930s to the Ambisonic concepts of the 1970s, as well as classical ways of applying Ambisonics in first-order coincident sound scene recording and reproduction that have been practiced since the 1980s. As, from time to time, the underlying mathematics become quite involved, but should be comprehensive without sacrificing readability, the book includes an extensive mathematical appendix. The book offers readers a deeper understanding of Ambisonic technologies, and will especially benefit scientists, audio-system and audio-recording engineers. In the advanced sections of the book, fundamentals and modern techniques as higher-order Ambisonic decoding, 3D audio effects, and higher-order recording are explained. Those techniques are shown to be suitable to supply audience areas ranging from studio-sized to hundreds of listeners, or headphone-based playback, regardless whether it is live, interactive, or studio-produced 3D audio material

    Audio Visual Speaker Localization from EgoCentric Views

    Full text link
    The use of audio and visual modality for speaker localization has been well studied in the literature by exploiting their complementary characteristics. However, most previous works employ the setting of static sensors mounted at fixed positions. Unlike them, in this work, we explore the ego-centric setting, where the heterogeneous sensors are embodied and could be moving with a human to facilitate speaker localization. Compared to the static scenario, the ego-centric setting is more realistic for smart-home applications e.g., a service robot. However, this also brings new challenges such as blurred images, frequent speaker disappearance from the field of view of the wearer, and occlusions. In this paper, we study egocentric audio-visual speaker DOA estimation and deal with the challenges mentioned above. Specifically, we propose a transformer-based audio-visual fusion method to estimate the relative DOA of the speaker to the wearer, and design a training strategy to mitigate the problem of the speaker disappearing from the camera's view. We also develop a new dataset for simulating the out-of-view scenarios, by creating a scene with a camera wearer walking around while a speaker is moving at the same time. The experimental results show that our proposed method offers promising performance in this new dataset in terms of tracking accuracy. Finally, we adapt the proposed method for the multi-speaker scenario. Experiments on EasyCom show the effectiveness of the proposed model for multiple speakers in real scenarios, which achieves state-of-the-art results in the sphere active speaker detection task and the wearer activity prediction task. The simulated dataset and related code are available at https://github.com/KawhiZhao/Egocentric-Audio-Visual-Speaker-Localization

    Three-dimensional point-cloud room model in room acoustics simulations

    Get PDF

    Investigating the build-up of precedence effect using reflection masking

    Get PDF
    The auditory processing level involved in the build‐up of precedence [Freyman et al., J. Acoust. Soc. Am. 90, 874–884 (1991)] has been investigated here by employing reflection masked threshold (RMT) techniques. Given that RMT techniques are generally assumed to address lower levels of the auditory signal processing, such an approach represents a bottom‐up approach to the buildup of precedence. Three conditioner configurations measuring a possible buildup of reflection suppression were compared to the baseline RMT for four reflection delays ranging from 2.5–15 ms. No buildup of reflection suppression was observed for any of the conditioner configurations. Buildup of template (decrease in RMT for two of the conditioners), on the other hand, was found to be delay dependent. For five of six listeners, with reflection delay=2.5 and 15 ms, RMT decreased relative to the baseline. For 5‐ and 10‐ms delay, no change in threshold was observed. It is concluded that the low‐level auditory processing involved in RMT is not sufficient to realize a buildup of reflection suppression. This confirms suggestions that higher level processing is involved in PE buildup. The observed enhancement of reflection detection (RMT) may contribute to active suppression at higher processing levels
    corecore